日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,DABC的邊AB上一點,CEAB,DEAC于點F,若FA=FC.

          (1)求證:四邊形ADCE是平行四邊形;

          (2)AEEC,EF=EC=1,求四邊形ADCE的面積.

          【答案】(1)見解析 (2)

          【解析】(1)首先利用ASA得出DAF≌△ECF,進而利用全等三角形的性質(zhì)得出CE=AD,即可得出四邊形ACDE是平行四邊形;

          (2)由AEEC,四邊形ADCE是平行四邊形,可推出四邊形ADCE是矩形,由FAC的中點,求出AC,根據(jù)勾股定理即可求得AE,由矩形面積公式即可求得結(jié)論.

          (1) CEAB,

          ∴∠EDA=DEC.

          FA=FC DFA=CFE,

          ∴△ADF≌△CEF(ASA) ,

          AF=CF,

          ∴四邊形ADCE是平行四邊形;

          (2)AEEC,

          綜合(1)四邊形ADCE是平行四邊形,

          ∴四邊形ADCE是矩形,

          DE=2EF=2 DCE=

          DC= ,

          四邊形ADCE的面積=CE·DC=.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】已知,如圖1,拋物線y=ax2+bx+3x軸交于點B、C,與y軸交于點A,且AO=CO,BC=4.

          (1)求拋物線解析式;

          (2)如圖2,點P是拋物線第一象限上一點,連接PBy軸于點Q,設點P的橫坐標為t,線段OQ長為d,求dt之間的函數(shù)關系式;

          (3)在(2)的條件下,過點Q作直線l⊥y軸,在l上取一點M(點M在第二象限),連接AM,使AM=PQ,連接CP并延長CPy軸于點K,過點PPN⊥l于點N,連接KN、CN、CM.若∠MCN+∠NKQ=45°時,求t值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點D、E分別在ABC的邊ACBC上,∠C=90°,DEAB,且3DE=2AB,AE=13,BD=9,那么AB的長為_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為了滿足市場需求,某廠家生產(chǎn)AB兩種款式的環(huán)保購物袋,每天共生產(chǎn)5000個,兩種購物袋的成本和售價如下表:

          成本(元/個)

          售價 (元/個)

          2

          2.4

          3

          3.6

          設每天生產(chǎn)A種購物袋x個,每天共獲利y.

          1)求yx的函數(shù)解析式;

          2)如果該廠每天最多投入成本12000元,那么每天最多獲利多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD中,AC,BD相交于點O,OAC的中點,AD∥BC.

          1)求證:四邊形ABCD是平行四邊形

          2)若AC⊥BD,且AB=4,則四邊形ABCD的周長為________.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知ABC,以AC為底邊作等腰ACD,且使ABC=2CAD,連接BD.

          (1)如圖1,若ADC=90°,BAC=30°,BC=1,求CD的長;

          (2)如圖1,若ADC=90°,證明:AB+BC=BD;

          (3)如圖2,若ADC=60°,探究AB,BC,BD之間的數(shù)量關系并證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】列方程式應用題.

          天河食品公司收購了200噸新鮮柿子,保質(zhì)期15天,該公司有兩種加工技術,一種是加工為普通柿餅,另一種是加工為特級霜降柿餅,也可以不需加工直接銷售.相關信息見表:

          品種

          每天可加工數(shù)量(噸)

          每噸獲利(元)

          新鮮柿子

          不需加工

          1000

          普通柿餅

          16

          5000

          特級霜降柿餅

          8

          8000

          由于生產(chǎn)條件的限制,兩種加工方式不能同時進行,為此公司研制了兩種可行方案:

          方案1:盡可能多地生產(chǎn)為特級霜降柿餅,沒來得及加工的新鮮柿子,在市場上直接銷售;

          方案2:先將部分新鮮柿子加工為特級霜降柿餅,再將剩余的新鮮柿子加工為普通柿餅,恰好15天完成.

          請問:哪種方案獲利更多?獲利多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,M△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,延長BNAC于點D,已知AB=10BC=15,MN=3

          1)求證:BN=DN;

          2)求△ABC的周長

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知點AB、C是數(shù)軸上三點,O為原點.點C對應的數(shù)為6,BC4,AB12

          1)求點AB對應的數(shù);

          2)動點PQ分別同時從A、C出發(fā),分別以每秒6個單位和3個單位的速度沿數(shù)軸正方向運動.MAP的中點,NCQ上,且CNCQ,設運動時間為tt0).

          ①求點M、N對應的數(shù)(用含t的式子表示); t為何值時,OM2BN

          查看答案和解析>>

          同步練習冊答案