日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21、如圖1,△ABD和△AEC均為等邊三角形,連接BE、CD.

          (1)請判斷:線段BE與CD的大小關(guān)系是
          BE=CD
          ;
          (2)觀察圖2,當(dāng)△ABD和△AEC分別繞點A旋轉(zhuǎn)時,BE、CD之間的大小關(guān)系是否會改變?

          (3)觀察圖3和4,若四邊形ABCD、DEFG都是正方形,猜想類似的結(jié)論是
          AE=CG
          ,在圖4中證明你的猜想;


          (4)這些結(jié)論可否推廣到任意正多邊形(不必證明),如圖5,BB1與EE1的關(guān)系是
          BB1=EE1
          ;它們分別在哪兩個全等三角形中
          △AE1E和△AB1B中
          ;請在圖6中標(biāo)出較小的正六邊形AB1C1D1E1F1的另五個頂點,連接圖中哪兩個頂點,能構(gòu)造出兩個全等三角形?
          分析:本題是變式拓展題,圖形由簡單到復(fù)雜,需要從簡單圖形中探討解題方法,并借鑒用到復(fù)雜圖形中;證明三角形全等時,用旋轉(zhuǎn)變換尋找三角形全等的條件.
          解答:解:(1)線段BE與CD的大小關(guān)系是BE=CD;

          (2)線段BE與CD的大小關(guān)系不會改變;

          (3)AE=CG.
          證明:如圖4,正方形ABCD與正方形DEFG中,
          ∵AD=CD,DE=DG,∠ADC=∠GDE=90°,
          又∠CDG=90°+∠ADG=∠ADE,
          ∴△ADE≌△CDG,
          ∴AE=CG.

          (4)這些結(jié)論可以推廣到任意正多邊形.
          如圖5,BB1=EE1,它們分別在△AE1E和△AB1B中,
          如圖6,連接FF1,可證△AB1B≌△AF1F.
          點評:本題綜合考查全等三角形、等邊三角形和多邊形的有關(guān)知識.注意對三角形全等的證明方法的發(fā)散.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          12、如圖,在△ABD和△ACE中,有下列四個論斷:①AB=AC;②AD=AE;③∠B=∠C;④BD=CE.請以其中三個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題
          ①③④?②(答案不惟一)
          .(用序號?????的形式寫出)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          24、如圖,在△ABD和△ACE中,F(xiàn)、G分別是AC和DB、AB和EC的交點.現(xiàn)有如下4個論斷:①AB=AC;②AD=AE;③AF=AG;④AD⊥BD,AE⊥CE.以其中3個論斷為題設(shè),填入下面的已知欄中,一個論斷為結(jié)論,填入下面的求證欄中,組成一個真命題,并寫出證明過程.
          已知:①AB=AC③AF=AG④AD⊥BD,AE⊥CE
          求證:②AD=AE
          證明:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          2、如圖,在△ABD和△ACE都是等邊三角形,則△ADC≌△ABE的依據(jù)是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          23、如圖,在△ABD和△ACD中,有四個判斷:①AB=AC;②∠1=∠2;③∠B=∠C;④BD=CD.請你從中選出三個判斷,其中兩個作為題設(shè)、一個作為結(jié)論,組成一個真命題.(要求寫出已知、求證及證明過程)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,連接BC、DE相交于點F,BC與AD相交于點G.
          (1)試說明:△ABC≌△ADE.
          (2)如果線段FD是線段FG和FB的比例中項,那么BC平分∠ABD嗎?為什么?

          查看答案和解析>>

          同步練習(xí)冊答案