日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。

          (1)求拋物線C2的解析式;

          (2)若拋物線C2的對稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計(jì)算它的面積;

          (3)若點(diǎn)F為對稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,如果存在,請求出點(diǎn)G的坐標(biāo),如果不存在,請說明理由。

           

          【答案】

          (1) y=x2-2x-3;(2)證明過程見解析,16;(3)G1(-2,5),G2(4,5),G3(2,-3).

          【解析】

          試題分析:(1)根據(jù)二次函數(shù)平移的規(guī)律:“左加右減,上加下減”,得出平移后解析式即可;

          (2)首先求出A,B兩點(diǎn)的坐標(biāo),再利用頂點(diǎn)坐標(biāo)得出AC=CB,CE=DE,進(jìn)而得出四邊形ADBE是平行四邊形以及四邊形ADBE是菱形,再利用三角形面積公式求出即可;

          (3)利用分OB為平行四邊形的邊和對角線兩種情況:①當(dāng)OB為平行四邊形的一邊時(shí),②當(dāng)OB為平行四邊形的一對角線時(shí)分別得出即可.

          試題解析:(1)∵將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2,

          ∴拋物線C1的頂點(diǎn)(0,3)向右平移1個(gè)單位,再向下平移7個(gè)單位得到(1,-4).

          ∴拋物線C2的頂點(diǎn)坐標(biāo)為(1,-4).

          ∴拋物線C2的解析式為y=(x-1)2-4,即y=x2-2x-3;

          (2)證明:由x2-2x-3=0,

          解得:x1=-1,x2=3,

          ∵點(diǎn)A在點(diǎn)B的左側(cè),

          ∴A(-1,0),B(3,0),AB=4.

          ∵拋物線C2的對稱軸為x=1,頂點(diǎn)坐標(biāo)D為(1,-4),

          ∴CD=4.AC=CB=2.

          將x=1代入y=x2+3得y=4,

          ∴E(1,4),CE=DE.

          ∴四邊形ADBE是平行四邊形.

          ∵ED⊥AB,

          ∴四邊形ADBE是菱形.

          S菱形ADBE=2××AB×CE=2××4×4=16.

          (3)存在.分AB為平行四邊形的邊和對角線兩種情況:

          ①當(dāng)OB為平行四邊形的一邊時(shí),如圖1,

          設(shè)F(1,y),

          ∵OB=3,∴G1(-2,y)或G2(4,y).

          ∵點(diǎn)G在y=x2-2x-3上,

          ∴將x=-2代入,得y=5;將x=4代入,得y=5.

          ∴G1(-2,5),G2(4,5).

          ②當(dāng)OB為平行四邊形的一對角線時(shí),如圖2,

          設(shè)F(1,y),OB的中點(diǎn)M,過點(diǎn)G作GH⊥OB于點(diǎn)H,

          ∵OB=3,OC=1,∴OM=,CM=

          ∵△CFM≌△HGM(AAS),∴HM=CM=

          ∴OH=2.

          ∴G3(2,-y).

          ∵點(diǎn)G在y=x2-2x-3上,

          ∴將(2,-y)代入,得-y=-3,即y=3.

          ∴G3(2,-3).

          綜上所述,在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,

          點(diǎn)G的坐標(biāo)為G1(-2,5),G2(4,5),G3(2,-3).

          考點(diǎn): 二次函數(shù)綜合題.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
          (1)求點(diǎn)B的坐標(biāo);
          (2)當(dāng)∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
          (3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊答案