【題目】已知拋物線y=ax2-bx+3的對稱軸是直線x=-1
(1)求證:2a+b=0;
(2)若關(guān)于x的方程ax2-bx-8=0的一個根是4,求方程的另一個根.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=2,D是BC的中點,過A,C,D三點的⊙O與AB邊相切于點A,則⊙O的半徑為( )
A.B.
C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:直線交x軸于點A,交y軸于點B,拋物線y=ax2+bx+c經(jīng)過A、B、C(1,0)三點.
(1)求拋物線的解析式;
(2)若點D的坐標(biāo)為(-1,0),在直線上有一點P,使ΔABO與ΔADP相似,求出點P的坐標(biāo);
(3)在(2)的條件下,在x軸下方的拋物線上,是否存在點E,使ΔADE的面積等于四邊形APCE的面積?如果存在,請求出點E的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+4的圖象與x軸交于兩點A、B,與y軸交于點C,且A(1,0)、B(4,0).
(1)求此二次函數(shù)的表達(dá)式;
(2)如圖1,拋物線的對稱軸m與x軸交于點E,CD⊥m,垂足為D,點F(,0),動點N在線段DE上運動,連接CF、CN、FN,若以點C、D、N為頂點的三角形與△FEN相似,求點N的坐標(biāo);
(3)如圖2,點M在拋物線上,且點M的橫坐標(biāo)是1,點P為拋物線上一動點,若∠PMA=45°,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解學(xué)生對新聞、體育、娛樂、動畫四類電視節(jié)目的喜愛情況,進(jìn)行了統(tǒng)計調(diào)查隨機(jī)調(diào)查了某班所有同學(xué)最喜歡的節(jié)目
每名學(xué)生必選且只能選擇四類節(jié)目中的一類
并將調(diào)查結(jié)果繪成如下不完整的統(tǒng)計圖
根據(jù)兩圖提供的信息,回答下列問題:
最喜歡娛樂類節(jié)目的有______人,圖中
______;
請補(bǔ)全條形統(tǒng)計圖;
根據(jù)抽樣調(diào)查結(jié)果,若該校有1800名學(xué)生,請你估計該校有多少名學(xué)生最喜歡娛樂類節(jié)目;
在全班同學(xué)中,有甲、乙、丙、丁等同學(xué)最喜歡體育類節(jié)目,班主任打算從甲、乙、丙、丁4名同學(xué)中選取2人參加學(xué)校組織的體育知識競賽,請用列表法或樹狀圖求同時選中甲、乙兩同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是等邊三角形ABC內(nèi)的一點,∠AOB=130°,∠BOC=α.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得到△ADC,連接OD.
(1)判斷△COD的形狀,并加以說明理由.
(2)若AD=1,OC=,OA=
時,求α的度數(shù).
(3)探究:當(dāng)α為多少度時,△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A、B分別在x軸、y軸的正半軸上,OA=4,AB=5,點D在反比例函數(shù)(k>0)的圖象上,
,點P在y軸負(fù)半軸上,OP=7.
(1)求點B的坐標(biāo)和線段PB的長;
(2)當(dāng)時,求反比例函數(shù)的解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B.圖②是點F運動時,△FBC的面積y(cm)隨時間x(s)變化的關(guān)系圖象,則a的值是__
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AO為Rt△ABC的角平分線,∠ACB=90°,以O為圓心,OC為半徑的圓分別交AO,BC于點D,E,連接ED并延長交AC于點F.
(1)求證:AB是⊙O的切線;
(2)當(dāng)時,求
的值;
(3)在(2)的條件下,若⊙O的半徑為4,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com