日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1)觀察猜想

          如圖①,B、A、C在同一條直線上,DB⊥BC,EC⊥BC∠DAE=90°,AD=AE,BC、BD、CE之間的數(shù)量關(guān)系為

          (2)問題解決

          如圖②,Rt△ABC,∠ABC=90°CB=8,AB=4,以AC為直角邊向外作等腰Rt△DAC連接BD,BD的長。

          (3)拓展延伸

          如圖③,在四邊形ABCD,∠ABC=∠ADC=90°,CB=8.AB=4,DC=DA,則BD=

          【答案】1

          2;

          3.

          【解析】

          1)觀察猜想:證明△ADB≌△EAC,可得結(jié)論:BC=AB+AC=BD+CE;
          2)問題解決:作輔助線,同理證明:△ABC≌△DEA,可得DE=AB=2,AE=BC=4,最后利用勾股定理求BD的長;
          3)拓展延伸:同理證明三角形全等,設(shè)AF=x,DF=y,根據(jù)全等三角形對應(yīng)邊相等列方程組可得結(jié)論.

          解:(1)觀察猜想
          BC=BD+CE

          理由是:如圖①,∵∠B=90°,∠DAE=90°,
          ∴∠D+DAB=DAB+EAC=90°,
          ∴∠D=EAC,
          ∵∠B=C=90°,AD=AE
          ∴△ADB≌△EACAAS),
          BD=AC,EC=AB
          BC=AB+AC=BD+CE;

          2)問題解決

          如圖②,過DDEAB,交BA的延長線于E
          由(1)得:△ABC≌△DEA,
          DE=AB=4,AE=BC=8,
          RtBDE中,BE=BA+AE=4+8=12,

          由勾股定理得:

          3)拓展延伸


          如圖③,過DDEBCE,作DFABF,
          同理得:△CED≌△AFD,
          CE=AFED=DF,
          設(shè)AF=xDF=y,

          BC=8,AB=4

          ,解得: ,

          BF=AF+ AB=2+4=6DF=6,
          由勾股定理得:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題背景:在△ABC中,AB,BC,AC三邊的長分別為,,,求此三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.

          (1)請你將△ABC的面積直接填寫在橫線上:________.

          思維拓展:

          (2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別為a,a,a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.

          探索創(chuàng)新:

          (3)若△ABC三邊的長分別為,,(m>0,n>0,且m≠n),試運用構(gòu)圖法畫出示意圖并求出這三角形的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,AD平分∠BACC=90°,DEAB于點E,點FAC上,BD=DF.

          1)求證:CF=EB.

          2AB=12,AF=8,求CF的長。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ

          (1)求證:四邊形BPEQ是菱形;

          (2)若AB=6,F(xiàn)為AB的中點,OF+OB=9,求PQ的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(-1,12),B(2,-3).

          (1)求這個二次函數(shù)的解析式;

          (2)求這個圖象的頂點坐標(biāo)及與x軸的交點坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,長方形ABCD的紙片,長AD=10厘米,寬AB=8厘米,AD沿點A對折,點D正好落在BC上的點F處,AE是折痕.

          1)圖中有全等的三角形嗎?如果有,請直接寫出來;

          2)求線段EF的長;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四邊形ABCD的頂點為A12),B(﹣1,2),C(﹣1,﹣2),D1,﹣2).點M和點N同時從E點出發(fā),沿四邊形的邊做環(huán)繞勻速運動,M點以1單位/s的速度做逆時針運動,N點以2單位/s的速度做順時針運動,則點M和點N2016次相遇時的坐標(biāo)為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知二次函數(shù)c為常數(shù)的圖象經(jīng)過點,點,頂點為點M,過點A軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.

          求該二次函數(shù)的解析式及點M的坐標(biāo).

          過該二次函數(shù)圖象上一點Py軸的平行線,交一邊于點Q,是否存在點P,使得以點P、Q、C、O為頂點的四邊形為平行四邊形,若存在,求出P點坐標(biāo);若不存在,說明理由.

          N是射線CA上的動點,若點M、C、N所構(gòu)成的三角形與相似,請直接寫出所有點N的坐標(biāo)直接寫出結(jié)果,不必寫解答過程

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,CA=CB,CD=CE,∠ACB=DCE

          1)求證:BE=AD;

          2)當(dāng)α=90°時,取ADBE的中點分別為點P、Q,連接CP,CQPQ,如圖②,判斷CPQ的形狀,并加以證明.

          查看答案和解析>>

          同步練習(xí)冊答案