日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】我們把順次連接四邊形各邊中點(diǎn)所得的四邊形叫做中點(diǎn)四邊形.若一個(gè)任意四邊形的面積為a,則它的中點(diǎn)四邊形面積為(

          A.aB. C.D.

          【答案】A

          【解析】

          EAB中點(diǎn),且EF平行于AC,EH平行于BD,得到△BEK與△ABM相似,△AEN與△ABM相似,利用面積之比等于相似比的平方,得到△EBK面積與△ABM面積之比為14,且△AEN與△EBK面積相等,進(jìn)而確定出四邊形EKMN面積為△ABM的一半,同理得到四邊形KFPM面積為△BCM面積的一半,四邊形QGPM面積為△DCM面積的一半,四邊形HQMN面積為△DAM面積的一半,四個(gè)四邊形面積之和即為四個(gè)三角形面積之和的一半,即為四邊形ABCD面積的一半,即可得出答案.

          解:如圖,畫任意四邊形ABCD,設(shè)ACEH,FG分別交于點(diǎn)N,P,BDEF,HG分別交于點(diǎn)K,Q,則四邊形EFGH即為它的中點(diǎn)四邊形,

          EAB的中點(diǎn),EF//AC,EH//BD,

          ∴△EBK∽△ABM,△AEN∽△ABM,

          =,SAEN=SEBK,

          =

          同理可得:=,=,=,

          =

          ∵四邊形ABCD的面積為a

          ∴四邊形EFGH的面積為,

          故選:A

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商場服裝柜在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六一”國際兒童節(jié),商場決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡量減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.假設(shè)商場降價(jià)元,

          (1)降價(jià)元后,每一件童裝的利潤為___________(元),每天可以賣出去的童裝件數(shù)為____________(件)(用含的代數(shù)式表示);

          (2)若銷售該童裝每天盈利要達(dá)到1200元,則每件童裝應(yīng)該降價(jià)多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形ABCD中,點(diǎn)G在對角線BD上(不與點(diǎn)B,D重合),GEDC于點(diǎn)E,GFBC于點(diǎn)F,連結(jié)AG.

          (1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;

          (2)若正方形ABCD的邊長為1,AGF=105°,求線段BG的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,拋物線y軸交于點(diǎn),與x軸交于點(diǎn),點(diǎn)B坐標(biāo)為

          求二次函數(shù)解析式及頂點(diǎn)坐標(biāo);

          過點(diǎn)AAC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)點(diǎn)PAC上方,作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD關(guān)于y軸對稱,邊AD在x軸上,點(diǎn)B在第四象限,直線BD與反比例函數(shù)的圖象交于點(diǎn)B、E.

          (1)求反比例函數(shù)及直線BD的解析式;

          (2)求點(diǎn)E的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,∠MON90°,正方形ABCD的頂點(diǎn)A、B分別在OMON上,AB13OB5,EAC上一點(diǎn),且∠EBC=∠CBN,直線DEON交于點(diǎn)F

          1)求證BEDE;

          2)判斷DFON的位置關(guān)系,并說明理由;

          3)△BEF的周長為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖的圖例①是一個(gè)方陣圖,每行的3個(gè)數(shù)、每列的3個(gè)數(shù)、斜對角的3個(gè)數(shù)相加的和均相等.如果將方陣圖的每個(gè)數(shù)都加上同一個(gè)數(shù),那么方陣中每行的3個(gè)數(shù)、每列的3個(gè)數(shù)、斜對角的3個(gè)數(shù)相加的和仍然相等,這樣就形成新的方陣圖.

          根據(jù)圖①②③中給出的數(shù),對照原來的方陣圖,請你完成圖②③的方陣圖?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在 13×7 的網(wǎng)格中,每個(gè)小正方形邊長都是 1,其頂點(diǎn)叫做格點(diǎn),如圖 A、B、DE 均為格點(diǎn),ABD 為格點(diǎn)三角形.

          1)請?jiān)诮o定的網(wǎng)格中畫 ABCD,要求 C 點(diǎn)在格點(diǎn)上;

          2)在(1)中 ABCD 右側(cè),以格點(diǎn) E 為其中的一個(gè)頂點(diǎn),畫格點(diǎn)EFG,并使 EF5,FG3,EG

          3)先將(2)中的線段 EF 向右平移 6 個(gè)單位、再向下平移 l 個(gè)單位到 MP 的位置,再以 MP 為對角線畫矩形 MNPQM、N、PQ 按逆時(shí)針方向排列),直接寫出矩形 MNPQ 的面積為 ______

          查看答案和解析>>

          同步練習(xí)冊答案