日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
          (1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.
          求證:中點四邊形EFGH是平行四邊形;

          (2)如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

          (3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)

          【答案】
          (1)

          證明:如圖1中,連接BD.

          ∵點E,H分別為邊AB,DA的中點,

          ∴EH∥BD,EH= BD,

          ∵點F,G分別為邊BC,CD的中點,

          ∴FG∥BD,F(xiàn)G= BD,

          ∴EH∥FG,EH=GF,

          ∴中點四邊形EFGH是平行四邊形.


          (2)

          四邊形EFGH是菱形.

          證明:如圖2中,連接AC,BD.

          ∵∠APB=∠CPD,

          ∴∠APB+∠APD=∠CPD+∠APD

          即∠APC=∠BPD,

          在△APC和△BPD中,

          ,

          ∴△APC≌△BPD,

          ∴AC=BD

          ∵點E,F(xiàn),G分別為邊AB,BC,CD的中點,

          ∴EF= AC,F(xiàn)G= BD,

          ∵四邊形EFGH是平行四邊形,

          ∴四邊形EFGH是菱形.


          (3)

          四邊形EFGH是正方形.

          證明:如圖2中,

          設(shè)AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.

          ∵△APC≌△BPD,

          ∴∠ACP=∠BDP,

          ∵∠DMO=∠CMP,

          ∴∠COD=∠CPD=90°,

          ∵EH∥BD,AC∥HG,

          ∴∠EHG=∠ENO=∠BOC=∠DOC=90°,

          ∵四邊形EFGH是菱形,

          ∴四邊形EFGH是正方形.


          【解析】(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O(shè)為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.

          (1)求點C的坐標;

          (2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;

          (3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將三角形ABC沿DE折疊,使點A落在BC上的點F處,且DE∥BC,若∠B=70,則∠BDF=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,ADBE是高,ABE=45°,點FAB的中點,ADFEBE分別交于點G、HCBE=BAD.有下列結(jié)論:FD=FE;AH=2CD;BCAD=AE2;④∠DFE=2DAC ;若連接CH,則CHEF.其中正確的個數(shù)為(

          A. 2個 B. 3個 C. 4個 D. 5個

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知|m﹣2|+(n+1)2=0,則m﹣n=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一個長方體的長為2a , 寬也是2a , 高為h.
          (1)用a 、h的代數(shù)式表示該長方體的體積與表面積.
          (2)當a=3,h= 時,求相應(yīng)長方體的體積與表面積.
          (3)在(2)的基礎(chǔ)上,把長增加x , 寬減少x , 其中0<x<6,問長方體的體積是否發(fā)生變化,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】把方程x(5x﹣4)+1=2化為一般形式,如果二次項系數(shù)為5,則一次項系數(shù)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC是定圓O的內(nèi)接三角形,AD為ABC的高線,AE平分BAC交O于E,交BC于G,連OE交BC于F,連OA,在下列結(jié)論中, CE=2EF,②△ABG∽△AEC,③∠BAO=DAC,為常量.其中正確的有______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】判斷以下各題的結(jié)論是否正確(對的打“√”,錯的打“×”).
          (1)若 b﹣3a<0,則b<3a; 
          (2)如果﹣5x>20,那么x>﹣4; 
          (3)若a>b,則 ac2>bc2; 
          (4)若ac2>bc2 , 則a>b; 
          (5)若a>b,則 a(c2+1)>b(c2+1).
          (6)若a>b>0,則

          查看答案和解析>>

          同步練習冊答案