日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 經(jīng)過原點和(4,0)的兩條拋物線,頂點分別為,且都在第1象限,連結(jié)軸于,且.
          【小題1】分別求出拋物線的解析式;
          【小題2】點C是拋物線軸上方的一動點,作軸于,交拋物線于D,試判斷的數(shù)量關(guān)系,并說明理由;
          【小題3】直線,交拋物線于M,交拋物線于N,是否存在以點為頂點的四邊形是平行四邊形,若存在,求出的值;若不存在,說明理由..

          【小題1】∵(2,3),(2,6).          ∵(2,3)和依題意得:解得       
          同理
          【小題2】 證明;設(shè).∵上,∴        ∵上,∴.
          ()—()=.
                
          【小題3】由于MN∥BT,當假設(shè)存在四邊形為平行四邊形時,則=6.


          依題意,得: .           ="-6,  " 此方程無解,
          ="6,   " 解之得:∴
          ∴存在使得以點為頂點的四邊形是平行四邊形.解析:
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)經(jīng)過原點和G(4,0)的兩條拋物線y1=a1x2+b1x,y2=a2x2+b2x,頂點分別為A,B,且都在第1象限,連接BA交x軸于T,且BA=AT=3.
          (1)分別求出拋物線y1和y2的解析式;
          (2)點C是拋物線y2的x軸上方的一動點,作CE⊥x軸于E,交拋物線y1于D,試判斷CD和DE的數(shù)量關(guān)系,并說明理由;
          (3)直線x=m,交拋物線y1于M,交拋物線y2于N,是否存在以點M,N,B,T為頂點的四邊形是平行四邊形,若存在,求出m的值;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過原點和第一、三、四象限,則函數(shù)有最
           
          值,且a
           
          0,b
           
          0,c
           
          0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,拋物線y=x2+bx+c(b、c為常數(shù))經(jīng)過原點和E(3,0).
          (1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
          (2)設(shè)A是該拋物線上位于x軸下方、且在對稱軸左側(cè)的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C.
          ①當BC=1時,求矩形ABCD的周長;
          ②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值及此時點A的坐標;如果不存在,請說明理由;
          ③當B(
          12
          ,0)時,x軸上是否存在兩點P、Q(點P在點Q的左邊),使得四邊形PQDA是菱形?若存在,請求出符合條件的所有點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)y=ax2+bx-2的圖象過點(1,0),一次函數(shù)的圖象經(jīng)過原點和點(1,-b),其中a>b>0且a,b為實數(shù).
          (1)求一次函數(shù)的表達式;(用含b的式子表示)
          (2)試說明:這兩個函數(shù)的圖象交于不同的兩點.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          二次函數(shù)y=ax2+bx的圖象經(jīng)過原點和二、三、四象限,則滿足a,b的條件為( 。

          查看答案和解析>>

          同步練習(xí)冊答案