日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,矩形ABCD(點(diǎn)A在第一象限)與x軸的正半軸相交于M,與y的負(fù)半軸相交于N,AB∥x軸,反比例函數(shù)的圖象y=
          kx
          過A、C兩點(diǎn),直線AC與x軸相交于點(diǎn)E、與y軸相交于點(diǎn)F.
          (1)若B(-3,3),直線AC的解析式為y=ax+b.
          ①求a的值;
          ②連接OA、OC,若△OAC的面積記為S△OAC,△ABC的面積記為S△ABC,記S=S△ABC-S△OAC,問S是否存在最小值?若存在,求出其最小值;若不存在,請(qǐng)說明理由.
          (2)AE與CF是否相等?請(qǐng)證明你的結(jié)論.
          分析:(1)①由于四邊形ABCD是矩形,且AB∥x軸,可根據(jù)B的坐標(biāo),表示出A、C的坐標(biāo),將它們分別代入直線AC的解析式中,消去b后即可求得a的值;
          ②由于四邊形ABCD是矩形,且AC是矩形的對(duì)角線,則△ABC和△ACD的面積相等,因此△ABC、△AOC的面積差即為△ACD、△AOC的面積差,那么由△OAM、△OCN以及矩形OMDN的面積和即可求得S、k的函數(shù)關(guān)系式,根據(jù)自變量的取值范圍及函數(shù)的性質(zhì)即可判斷出S是否具有最小值.
          (2)連接MN,設(shè)AB、BC與坐標(biāo)軸的交點(diǎn)分別為P、Q,易證得矩形APOM和矩形CQON的面積相等,那么DN•AD=DM•CD,將此式化為比例式,即可證得△DMN∽△DAC,根據(jù)相似三角形得到的等角,即可判定MN∥AC,由此可證得四邊形AFNM、四邊形CEMN都是平行四邊形,即可得到CE=AF=MN,由此可證得AE=CF.
          解答:解:(1)①∵四邊形ABCD是矩形,且AB∥x軸,B(-3,3),
          ∴A(
          k
          3
          ,3)、C(-3,-
          k
          3
          ).
          ∵y=ax+b經(jīng)過A、C兩點(diǎn),
          k
          3
          a+b=3
          -3a+b=-
          k
          3
          ,消去b得:(
          k
          3
          +3)a=
          k
          3
          +3.
          ∵k>0,故
          k
          3
          +3≠0,∴a=1.
          ②S=S△ABC-S△OAC=S△ACD-S△OAC=S△AOM+S△CON+S矩形ONDM,
          ∴S=
          k
          2
          +
          k
          2
          +
          k2
          9
          =
          1
          9
          (k+
          9
          2
          2-
          9
          4
          ;
          ∴當(dāng)k>-
          9
          2
          時(shí),S隨k的增大而增大,
          由于k>0,故k沒有最小值,S也沒有最小值.
          精英家教網(wǎng)
          (2)AE=CF,理由如下:
          連接MN,設(shè)AB與y軸的交點(diǎn)為P,BC與x軸的交點(diǎn)為Q;
          則S矩形APOM=S矩形CQON=k,
          ∴DN•AD=DM•CD,即
          DN
          CD
          =
          DM
          AD

          又∵∠D=∠D,
          ∴△DNM∽△DCA,得∠DNM=∠DCA,
          ∴MN∥AC;
          又∵AD∥y軸,故四邊形AFNM是平行四邊形,
          同理四邊形CNME是平行四邊形,
          ∴CE=MN=AF,故AE=CF.
          點(diǎn)評(píng):此題是反比例函數(shù)的綜合題,涉及到函數(shù)圖象交點(diǎn)坐標(biāo)的求法、圖形面積的求法、矩形的性質(zhì)、二次函數(shù)的應(yīng)用以及平行四邊形、相似三角形的判定和性質(zhì),綜合性強(qiáng),難度較大.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          17、已知,如圖,矩形ABCD中,AC與BD相交于點(diǎn)O,BE⊥AC于E,CF⊥BD于F.
          求證:BE=CF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•武漢)如圖,矩形ABCD中,點(diǎn)E在邊AB上,將矩形ABCD沿直線DE折疊,點(diǎn)A恰好落在邊BC的點(diǎn)F處.若AE=5,BF=3,則CD的長(zhǎng)是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•黃岡)如圖,矩形ABCD中,AB=4,BC=3,邊CD在直線l上,將矩形ABCD沿直線l作無(wú)滑動(dòng)翻滾,當(dāng)點(diǎn)A第一次翻滾到點(diǎn)A1位置時(shí),則點(diǎn)A經(jīng)過的路線長(zhǎng)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,矩形ABCD的兩邊長(zhǎng)AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).
          (1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
          (2)若△PBQ的面積為18cm2,求運(yùn)動(dòng)時(shí)間;
          (3)求△PBQ的面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,矩形ABCD的邊AB、BC的長(zhǎng)分別為4
          3
          cm和2
          6
          cm,E、F、G、H分別是矩形各邊的中點(diǎn),求四邊形EFGH的周長(zhǎng)和面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案