日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+2經(jīng)過點A(10)和點B(4,0),且與y軸交于點C,點D的坐標為(2,0),點P(m,n)是該拋物線上的一個動點,連接CA,CDPD,PB

          (1)求該拋物線的解析式;

          (2)當△PDB的面積等于△CAD的面積時,求點P的坐標;

          (3)m0,n0時,過點P作直線PEy軸于點E交直線BC于點F,過點FFGx軸于點G,連接EG,請直接寫出隨著點P的運動,線段EG的最小值.

          【答案】1;(2)點P的坐標是(13)、(2,3)、(5-3)或(-2,-3);(3)線段EG的最小值為..

          【解析】

          1)根據(jù)拋物線y=ax2+bx+2經(jīng)過點A-10)和點B4,0),應(yīng)用待定系數(shù)法,求出該拋物線的解析式即可;

          2)首先根據(jù)三角形的面積的求法,求出△CAD的面積,即可求出△PDB的面積,然后求出BD=2,即可求出|n|=3,據(jù)此判斷出n=3-3,再把它代入拋物線的解析式,求出x的值是多少,即可判斷出點P的坐標;

          3)首先應(yīng)用待定系數(shù)法,求出BC所在的直線的解析式,然后根據(jù)點P的坐標是(m,n),求出點F的坐標,再根據(jù)二次函數(shù)最值的求法,求出EG2的最小值,即可求出線段EG的最小值.

          解:(1)把A-1,0),B40)兩點的坐標代入y=ax2+bx+2中,可得

          ,

          解得:,

          ∴拋物線的解析式為:

          2))∵拋物線的解析式為,

          x=0時,y=2,

          ∴點C的坐標是(02),

          ∵點A-10)、點D2,0),

          AD=2--1=3,

          SCAD =

          SPDB =3,

          ∵點B4,0)、點D2,0),

          BD=2,

          |n|=3×2÷2=3

          n=3-3,

          ①當n=3時,

          ,

          解得:m=1m=2

          ∴點P的坐標是(1,3)或(2,3);

          ②當n=-3時,

          解得m=5m=-2

          ∴點P的坐標是(5-3)或(-2,-3);

          綜上,可得點P的坐標是(1,3)、(23)、(5,-3)或(-2,-3);

          3)如圖,

          設(shè)BC所在的直線的解析式是:y=mx+n,

          ∵點C的坐標是(0,2),點B的坐標是(4,0),

          ,

          解得:

          BC所在的直線的解析式是:,

          ∵點P的坐標是(m,n),

          ∴點F的坐標是(4-2n,n),

          ,

          ∴當時,線段EG有最小值:

          ∴線段EG的最小值為.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線的圖象與軸交于與直線交于點

          1)求拋物線的解析式;

          2)如圖1,點是拋物線上(軸下方)的一個動點,過點軸的平行線與直線交于點試判斷在點運動過程中,以點為頂點的四邊形能否構(gòu)成平行四邊形,若能,請求出點的坐標;若不能,請說明理由.

          3)如圖2,點是拋物線的頂點,拋物線的對稱軸軸于點當點在拋物線上之間運動時,連接于點連接并延長交于點猜想在點的運動過程中,的和是否為定值?若是,試求出該定值;若不是,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點分別是邊長為2的正六邊形中不相鄰三條邊的中點,則的周長為(

          A.6B.C.D.9

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.如圖,在平面直角坐標系中,矩形的邊,點,在邊存在點,使得為“智慧三角形”,則點的坐標為:______

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】直線與雙曲線只有一個交點A1,2),且與x軸、y軸分別交于B、C兩點,AD垂直平分OB,垂足為D,

          求:(1)直線、雙曲線的解析式.

          2)線段BC的長;

          3)三角形BOC的內(nèi)心到三邊的距離.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,點D是BC的中點,點E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是_______(只填寫序號).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,ABCAED都是等腰直角三角形,∠BAC=EAD=90°,點B在線段AE上,點C在線段AD上,如圖2,ABC以點A為旋轉(zhuǎn)中心順時針旋轉(zhuǎn).

          1)證明:BE=CD

          2)當AC=ED時,探究在ABC旋轉(zhuǎn)的過程中,是否存在這樣的旋轉(zhuǎn)角α,使以A、BC、D四點為頂點的四邊形是平行四邊形?若存在,求出角α的度數(shù);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】春節(jié)期間,甲、乙兩家水果店以同樣的價格銷售同一種水果,它們的優(yōu)惠方案分別為:甲水果店,一次性購水果超過元,超過部分打七折;乙水果店,一次性購水果超過元,超過部分打五折,設(shè)水果售價為(單位:元),在甲.乙兩家水果店購水果應(yīng)付金額為(單位:元),(單位:元),之間的函數(shù)關(guān)系如圖所示.

          1)求甲水果店購水果應(yīng)付金額與水果售價之間的函數(shù)關(guān)系式;

          2)求交點的坐標;

          3)根據(jù)圖象,請直接寫出春節(jié)期間選擇哪家水果店購水果更優(yōu)惠.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知水銀體溫計的讀數(shù)y)與水銀柱的長度xcm)之間是一次函數(shù)關(guān)系.現(xiàn)有一支水銀體溫計,其部分刻度線不清晰(如圖),表中記錄的是該體溫計部分清晰刻度線及其對應(yīng)水銀柱的長度.

          水銀柱的長度xcm

          4.2

          8.2

          9.8

          體溫計的讀數(shù)y

          35.0

          40.0

          42.0

          1)求y關(guān)于x的函數(shù)關(guān)系式(不需要寫出函數(shù)的定義域)

          2)用該體溫計測體溫時,水銀柱的長度為6.6cm,求此時體溫計的讀數(shù).

          查看答案和解析>>

          同步練習冊答案