日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,△ABC內(nèi)接于圓,點D在劣弧上,ADBC,DCABQAC中點,點D與點P關(guān)于點Q對稱.

          1)求證:△PAD∽△ABC

          2)求證:點BP,D在一條直線上.

          3)如圖2,記∠PABα,∠PCBβ,∠ABCθ,請用含α,β的代數(shù)式表示θ

          4)如圖3,設(shè)E,F分別為AB,BC的中點,EFBD于點H,求的值.

          【答案】1)詳見解析;(2)詳見解析;(3θ90°﹣;(4

          【解析】

          1)由對角線互相平分的四邊形是平行四邊形可證四邊形APCD是平行四邊形,可得APCD,APCD,可證∠PAD=∠B,即可證△PAD∽△ABC

          2)由相似三角形的性質(zhì)可得∠ACB=∠ADP,又由∠ACB=∠ADB,可得∠ADP=∠ADB,可證點B,P,D在一條直線上;

          3)由外角性質(zhì)可得∠APD+CPD=∠ABP+BAP+CBP+PCBα+β+θ,由平行四邊形的性質(zhì)和圓的內(nèi)接四邊形的性質(zhì)可得180°﹣∠ABCα+β+θ,即可求解;

          4)根據(jù)題意連接EP,FP,由角的數(shù)量關(guān)系可求∠EPF90°,通過相似三角形的判定和性質(zhì)可證EHHF,由直角三角形的性質(zhì)可求PHEFAC,即可求解.

          解:(1)∵點QAC中點,點D與點P關(guān)于點Q對稱,

          AQQC,PQQD,

          ∴四邊形APCD是平行四邊形,

          APCD,APCD,

          ∴∠PAD+ADC180°,

          ∵四邊形ABCD是圓內(nèi)接四邊形,

          ∴∠ABC+ADC180°,

          ∴∠PAD=∠B

          又∵,

          ∴△PAD∽△ABC.

          2)連接BD,如圖2,

          ∵△PAD∽△ABC,

          ∴∠ACB=∠ADP,

          ∵∠ACB=∠ADB,

          ∴∠ADP=∠ADB

          ∴點BP,D在一條直線上.

          3)∵∠APD=∠ABP+BAP,∠CPD=∠CBP+PCB,

          ∴∠APD+CPD=∠ABP+BAP+CBP+PCBα+β+θ

          ∵四邊形APCD是平行四邊形,

          ∴∠ADC=∠APC=∠APD+CPD,

          180°﹣∠ABCα+β+θ,

          180°﹣αβ,

          θ90°﹣.

          4)連接EP,FP,

          E,F分別為AB,BC的中點,

          AEBEAB,BFCFBC

          CDAB,CDAP

          AEAP,

          ∴∠APE90°﹣α

          同理可得∠CPF90°﹣β,

          ∴∠EPF360°﹣∠APE﹣∠CPF﹣∠APC180°﹣(α+β+θ),

          θ90°﹣,

          ∴∠EPF180°﹣(α+β+90°﹣)=90°,

          EAB的中點,點FBC的中點,

          EFAC,EFAC,

          ∴△BEH∽△BAQ,△BFH∽△BCQ,

          ,

          AQCQ,

          EHHF,

          PHEFAC,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】將立方體紙盒沿某些棱剪開,且使六個面連在一起,然后鋪平,可以得到其表面展開圖的平面圖形.

          1)以下兩個方格圖中的陰影部分能表示立方體表面展開圖的是   (填AB).

          2)在以下方格圖中,畫一個與(1)中呈現(xiàn)的陰影部分不相似(包括不全等)的立方體表面展開圖.(用陰影表示)

          3)如圖中的實線是立方體紙盒的剪裁線,請將其表面展開圖畫在右圖的方格圖中.(用陰影表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某初中為了提高學(xué)生綜合素質(zhì),決定開設(shè)以下校本課程:.軟筆書法,.經(jīng)典誦讀,.鋼筆畫,.花樣跳繩,為了了解學(xué)生最喜歡哪一項校本課程,隨機抽取了部分學(xué)生進行了調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

          1)這次被調(diào)查的學(xué)生共_____人;

          2)請將條形統(tǒng)計補充完整;

          3)在平時的花樣跳繩的課堂學(xué)習(xí)中,甲、乙、丙三人表現(xiàn)優(yōu)秀,現(xiàn)決定從這三名同學(xué)中任選兩名參加全區(qū)綜合素質(zhì)展示,求恰好同時選中甲、乙兩位同學(xué)的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某汽車租貿(mào)公司共有汽車50輛,市場調(diào)查表明,當(dāng)租金為每輛每日200元時可全部租出,當(dāng)租金每提高10元,租出去的車就減少2輛.

          1)當(dāng)租金提高多少元時,公司的每日收益可達到10120元?

          2)公司領(lǐng)導(dǎo)希望日收益達到10160元,你認(rèn)為能否實現(xiàn)?若能,求出此時的租金,若不能,請說明理由,

          3)汽車日常維護要定費用,已知外租車輛每日維護費為100元未租出的車輛維護費為50元,當(dāng)租金為多少元時,公司的利潤恰好為5500元?(利潤=收益﹣維護費)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,B5,0),點A在第一象限,且OAOB,sinAOB

          1)求過點O,A,B三點的拋物線的解析式.

          2)若y的圖象過(1)中的拋物線的頂點,求k的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.

          1)請問1輛甲種客車與1輛乙種客車的載客量分別為多少人?

          2)某學(xué)校組織240名師生集體外出活動,擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點.若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請給出最節(jié)省費用的租車方案,并求出最低費用.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一副三角尺按如圖的位置擺放(頂點C F 重合,邊CA與邊FE疊合,頂點B、C、D在一條直線上).將三角尺ABC繞著點C按逆時針方向旋轉(zhuǎn)n°后(0n360 ),若EDAB,則n的值是_______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,∠ABC45°,CDABD,BE平分∠ABC,且BEACE,與CD相交于點F,DHBCHBEG.下列結(jié)論:①BDCD;②AD+CFBD;③CEBF;④AEBG.其中正確的個數(shù)是( 。

          A. 1B. 2C. 3D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過An,b),Bma)且m+n=1

          1)當(dāng)b=a時,直接寫出函數(shù)圖象的對稱軸;

          2)求bc(用只含字母a、n的代數(shù)式表示):

          3)當(dāng)a<0時,函數(shù)有最大值-1,bc≥an≤,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案