日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.

          1.判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論

          2.若DE的長為2,cosB=,求⊙O的半徑.

           

          【答案】

           

          1.如圖,連接CD,則CD⊥AB,  

          又∵AC=BC,

          ∴AD=BD , 即點(diǎn)D是AB的中點(diǎn).…………………… 2分

          DE是⊙O的切線.

          理由是:連接OD,則DO是△ABC的中位線,

          ∴DO∥AC.

          又∵DE⊥AC, 

          ∴DE⊥DO,

          又∵OD是⊙O的半徑,

          ∴DE是⊙O的切線.…………… 3分

          2.∵AC=BC,∴∠B=∠A,

          ∴cos∠B=cos∠A=.

          ∵cos∠A==  又DE=

          ∴AD=3.  ∴BD=AD=3

          ∵cos∠B==,

          ∴BC=9,

          ∴半徑為…………… 3分

          【解析】(1)連接OD,則OD為△ABC的中位線,OD∥AC,已知DE⊥AC,可證DE⊥OC,證明結(jié)論;

          (2)利用勾股定理和直角三角形的角邊關(guān)系推出園的直徑,然后得出園的半徑。

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
          求證:∠B=∠C.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
          (1)以AB邊上一點(diǎn)O為圓心,過A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
          (2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
          (1)作出邊AC的垂直平分線DE;
          (2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
          求證:∠B=∠C.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題

          已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
                     ∠1=∠2;
          求證:∠B=∠C

          查看答案和解析>>

          同步練習(xí)冊答案