日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 11、如圖,已知⊙O1的半徑為t,t的半徑為2,圓心距O1O2=4.現(xiàn)把⊙O1沿直線O1O2平移,使⊙O1與⊙O2外切,則⊙O1平移的距離為( 。
          分析:根據(jù)⊙O1的半徑為1,大圓半徑為2,,圓心距為4,針對(duì)兩圓位置關(guān)系與圓心距,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系,兩圓相外切,求出另一圓的半徑即可.
          解答:解:依題意,∵兩圓相外切,
          ∴R+r=d,
          ∴2+1=3,
          ∴⊙O1平移的距離為4-3=1,,
          當(dāng)兩圓相交后,再平移外切,
          ∴⊙O1要經(jīng)過大圓,與大圓的右面相切,
          ∴⊙O1平移的距離為:4+2+1=7.
          故選C.
          點(diǎn)評(píng):此題主要考查了圓與圓的位置關(guān)系,得出相外切時(shí)兩種位置關(guān)系是解決問題的關(guān)鍵,同時(shí)考查了學(xué)生的綜合應(yīng)用能力及推理能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),已知A(-1,0),O1(1,0)精英家教網(wǎng)精英家教網(wǎng)
          (1)求出C點(diǎn)的坐標(biāo);
          (2)過點(diǎn)C作CD∥AB交⊙O1于D,若過點(diǎn)C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式;
          (3)如圖,已知M(1,-2
          3
          ),經(jīng)過A、M兩點(diǎn)有一動(dòng)圓⊙O2,過O2作O2E⊥O1M于E,若經(jīng)過點(diǎn)A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知半徑為1的⊙O1與x軸交于A,B兩點(diǎn),圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點(diǎn).
          (1)求二次函數(shù)的解析式;
          (2)射線OM從y軸正半軸開始,繞點(diǎn)O順時(shí)針方向以每秒15°的速度旋轉(zhuǎn),幾秒后射線OM與⊙O1相切?(切點(diǎn)為M)
          (3)當(dāng)射線OM與⊙O1相切時(shí),在射線OM上是否存在一點(diǎn)P,使得以P,O,A為頂點(diǎn)的三角形與△OO1M相似?若存在,請求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),已知A(-1,0),O1(1,0)
          (1)求出C點(diǎn)的坐標(biāo);
          (2)過點(diǎn)C作CD∥AB交⊙O1于D,若過點(diǎn)C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式;
          (3)如圖,已知M(1,數(shù)學(xué)公式),經(jīng)過A、M兩點(diǎn)有一動(dòng)圓⊙O2,過O2作O2E⊥O1M于E,若經(jīng)過點(diǎn)A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),

          已知A(-1,0),O1(1,0)

          (1)求出C點(diǎn)的坐標(biāo)。(4分)

          (2)過點(diǎn)C作CD∥AB交⊙O1于D,若過點(diǎn)C的直線恰好平分四邊形ABDC的面積,求出該直線的解析式。(4分)

          (3)如圖,已知M(1,),經(jīng)過A、M兩點(diǎn)有一動(dòng)圓⊙O2,過O2作O2E⊥ O1M     于E,若經(jīng)過點(diǎn)A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值。(4分)

           


          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2008-2009學(xué)年湖北省武漢市漢陽區(qū)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),已知A(-1,0),O1(1,0)
          (1)求出C點(diǎn)的坐標(biāo);
          (2)過點(diǎn)C作CD∥AB交⊙O1于D,若過點(diǎn)C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式;
          (3)如圖,已知M(1,),經(jīng)過A、M兩點(diǎn)有一動(dòng)圓⊙O2,過O2作O2E⊥O1M于E,若經(jīng)過點(diǎn)A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.

          查看答案和解析>>

          同步練習(xí)冊答案