日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•安岳縣模擬)如圖,在平行四邊形ABCD中,BE平分∠ABD交AD于點(diǎn)E,DF平分∠BDC交BC于點(diǎn)F.
          (1)求證:BE=DF.
          (2)若AB=BD,試判斷四邊形EBFD的形狀,并說明理由.
          分析:(1)由“有兩組對(duì)邊互相平行的四邊形是平行四邊形”證得四邊形EBFD為平行四邊形,然后根據(jù)“平行四邊形的對(duì)邊相等”的性質(zhì)證得結(jié)論;
          (2)根據(jù)等腰三角形的“三合一”的性質(zhì)推知BE⊥AD,然后由“有一內(nèi)角為直角的平行四邊形是矩形”證得四邊形EBFD是矩形.
          解答:(1)證明:∵四邊形ABCD是平行四邊形,
          ∴AD∥BC,CD∥BA,
          ∴∠BDA=∠CDB(兩直線平行,內(nèi)錯(cuò)角相等).
          又∵BE平分∠ABD,DF平分∠BDC,
          ∴∠DBE=
          1
          2
          ∠BDA,∠FDB=
          1
          2
          ∠CDB,
          ∴∠DBE=∠FDB(等量代換),
          ∴DF∥EB(內(nèi)錯(cuò)角相等,兩直線平行),
          ∴四邊形EBFD是平行四邊形(有兩組對(duì)邊互相平行的四邊形是平行四邊形),
          ∴BE=DF(平行四邊形的對(duì)邊相等);

          (2)解:四邊形EBFD是矩形;理由如下:
          由(1)知,四邊形EBFD是平行四邊形.
          ∵AB=BD,BE是∠ABD的平分線,
          ∴BE⊥AD,
          ∴∠DEB=90°,
          ∴?EBFD是矩形(有一內(nèi)角為直角的平行四邊形是矩形).
          點(diǎn)評(píng):本題考查矩形的判定與性質(zhì),平行四邊形的判定與性質(zhì).平行四邊形的判定方法共有五種,應(yīng)用時(shí)要認(rèn)真領(lǐng)會(huì)它們之間的聯(lián)系與區(qū)別,同時(shí)要根據(jù)條件合理、靈活地選擇方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•安岳縣模擬)如圖:直線y=ax+b分別與x軸,y軸相交于A、B兩點(diǎn),與雙曲線y=
          kx
          ,(x>0)相交于點(diǎn)P,PC⊥x軸于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-4,0),點(diǎn)B的坐標(biāo)為(0,2),PC=3.
          (1)求雙曲線對(duì)應(yīng)的函數(shù)關(guān)系式;
          (2)若點(diǎn)Q在雙曲線上,且QH⊥x軸于點(diǎn)H,△QCH與△AOB相似,請(qǐng)求出點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•安岳縣模擬)觀察圖中每一個(gè)正方形各頂點(diǎn)所標(biāo)數(shù)字的規(guī)律,可知2012應(yīng)標(biāo)在( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•安岳縣模擬)如圖,在直角三角形ABC中∠BAC=90°,AB=3,M為BC上一點(diǎn),連接AM.如果將三角形ABM沿直線AM翻折后,點(diǎn)B恰好與邊AC的中點(diǎn)D重合,那么點(diǎn)M到直線AC的距離為
          2
          2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•安岳縣模擬)在直角三角形ABC中,∠ACB=90°,AC=BC=1.過點(diǎn)B作直線EF⊥BC,點(diǎn)P為線段AB上一動(dòng)點(diǎn)(與點(diǎn)A,B均不重合),過點(diǎn)P作MN∥BC并交AC于點(diǎn)M,交EF于點(diǎn)N,作PD⊥PC,交直線EF于點(diǎn)D.
          (1)若點(diǎn)D在線段NB上(如圖1)求證:△PCM≌△DPN;
          (2)若點(diǎn)D在線段NB延長線上(如圖2)且BP=BD,求AP的長;
          (3)設(shè)AP=x,且P、C、D、B為頂點(diǎn)的四邊形的面積為y,請(qǐng)直接寫出y與x的函數(shù)關(guān)系式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案