日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用面積法來(lái)證明,下面是小聰利用圖1證明勾股定理的過(guò)程:

          將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

          證明:連結(jié)DB,過(guò)點(diǎn)DBC邊上的高DF,則DF=EC=b﹣a,

          ∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

          ∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

          ∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

          ∴a2+b2=c2

          請(qǐng)參照上述證法,利用圖2完成下面的證明.

          將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

          【答案】證明見(jiàn)解析.

          【解析】試題分析:首先連結(jié)BD,過(guò)點(diǎn)B作DE邊上的高BF,則BF=b﹣a,表示出S五邊形ACBED ,兩者相等,整理即可得證.

          試題解析:連結(jié)BD,過(guò)點(diǎn)BDE邊上的高BF,則BF=b﹣a,

          S五邊形ACBED=SACB+SABE+SADE=ab+ b2+ ab,

          S五邊形ACBED=SACB+SABD+SBDE= ab+ c2+ a(b﹣a),

          ab+b2+ ab= ab+c2+a(b﹣a),

          ∴a2+b2=c2

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】先化簡(jiǎn),再求值:4(mn2-2m)-2(3m-mn2),其中m=-1,n=-1.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如果關(guān)于x的方程x2﹣6x+m=0有兩個(gè)相等的實(shí)數(shù)根,那么m=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列運(yùn)算正確的是(

          A. ﹣5a﹣1=﹣5a+1 B. a2+a2=a4 C. 3a32a2=6a6 D. ﹣a23=﹣a6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】數(shù)軸上點(diǎn)A表示﹣1,點(diǎn)B表示2,則表示A、B兩點(diǎn)間的距離是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知∠α=55°34′,則∠α的余角等于

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無(wú)法判定ABC≌△ADC的是( 。

          A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD中,∠C=70°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小,此時(shí)∠MAN的度數(shù)為_________°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列命題中,真命題是(

          A.對(duì)角線相等的四邊形是等腰梯形

          B.兩個(gè)相鄰的內(nèi)角相等的梯形是等腰梯形

          C.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是等腰梯形

          D.平行于等腰三角形底邊的直線截兩腰所得的四邊形是等腰梯形

          查看答案和解析>>

          同步練習(xí)冊(cè)答案