日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2).延長CB交x軸于點A1,作正方形A1B1C1C;延長C1B1交x軸于點A2,作正方形A2B2C2C1
          (1)求正方形ABCD的面積;
          (2)求正方形A1B1C1C的面積;
          (3)若按題中的規(guī)律繼續(xù)作正方形A3B3C3C2…,則正方形AnBnCnCn-1的面積為
          9
          4
          n×5
          9
          4
          n×5
          .(用含n的式子表示)
          分析:(1)由點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2).即可求得OA與OD的長,然后由勾股定理即可求得AD的長,繼而求得正方形ABCD的面積;
          (2)易證得△DOA∽△ABA1,然后由相似三角形的對應(yīng)邊成比例,可求得A1B的長,即可求得A1C的長,即可得正方形A1B1C1C的面積;
          (3)觀察可得規(guī)律:正方形AnBnCnCn-1的面積為(
          9
          4
          n×5.
          解答:解:(1)∵點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2).
          ∴OA=1,OD=2,
          在Rt△AOD中,AD=
          OA2+OD2
          =
          5

          ∴正方形ABCD的面積為:(
          5
          2=5;

          (2)∵四邊形ABCD是正方形,
          ∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,
          ∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,
          ∴∠ADO=∠BAA1,
          ∵∠DOA=∠ABA1,
          ∴△DOA∽△ABA1,
          OD
          AB
          =
          OA
          A1B
          ,
          2
          5
          =
          1
          A1B

          解得:A1B=
          5
          2
          ,
          ∴A1C=A1B+BC=
          3
          5
          2

          ∴正方形A1B1C1C的面積為:(
          3
          5
          2
          2=
          45
          4
          ;

          (3)∵正方形ABCD的面積為:5,正方形A1B1C1C的面積為:
          45
          4
          =
          9
          4
          ×5,
          同理可得:正方形A2B2C2C1的面積為:
          9
          4
          ×
          9
          4
          ×5=(
          9
          4
          2×5,
          ∴正方形AnBnCnCn-1的面積為為:(
          9
          4
          n×5.
          故答案為:(
          9
          4
          n×5.
          點評:此題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)以及勾股定理.此題難度較大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          28、在平面直角坐標(biāo)系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標(biāo)為
          (-6,8)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          10、在平面直角坐標(biāo)系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
          -7

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點.
          (1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
          (2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標(biāo)原點.A、B兩點的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
          2
          2

          (1)求拋物線的函數(shù)解析式;
          (2)作AC⊥AD,AC交拋物線于點C,求點C的坐標(biāo)及直線AC的函數(shù)解析式;
          (3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          18、在平面直角坐標(biāo)系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
          (1)在圖中畫出所有符合要求的△A1B1C1;
          (2)若△OMN的頂點坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應(yīng)點M′的坐標(biāo)為(-1,-2),則θ=
          0°(或360°的整數(shù)倍)
          ,k=
          2

          查看答案和解析>>

          同步練習(xí)冊答案