日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖①②,在平面直角坐標(biāo)系中,一邊長為2的等邊三角板CDE恰好與坐標(biāo)系中的OAB重合,現(xiàn)將三角板CDE繞邊AB的中點(diǎn)G(G點(diǎn)也是DE的中點(diǎn)),按順時針方向旋轉(zhuǎn)180°C′ED的位置.

          (1)求C′點(diǎn)的坐標(biāo);

          (2)求經(jīng)過O、A、C′三點(diǎn)的拋物線的解析式;

          (3)如圖③,G是以AB為直徑的圓,過B點(diǎn)作⊙G的切線與x軸相交于點(diǎn)F,求切線BF的解析式;

          (4)在(3)的條件下,拋物線上是否存在一點(diǎn)M,使得BOFAOM相似?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

          【答案】(1) C′(3,)(2) y=x2x (3) y=x+(4)存在

          【解析】分析:1)作CHx如圖②,利用等邊三角形和旋轉(zhuǎn)的性質(zhì)得到AC′=OA=2,OAB=BAC′=60°,則∠CAH=60°,然后根據(jù)含30度的直角三角形三邊的關(guān)系計(jì)算出AH=1CH=,從而得到C點(diǎn)的坐標(biāo);

          2)設(shè)拋物線解析式為y=axx2),然后把C點(diǎn)坐標(biāo)代入求出a即可

          3)利用切線的性質(zhì)得ABBF,則利用∠FAB=60°得到FA=2AB=4所以F(﹣2,0),再判斷四邊形AOBC為菱形,則可寫出B1),然后利用待定系數(shù)法求直線BF的解析式

          4)先拋物線的對稱軸為直線x=1,拋物線的頂點(diǎn)坐標(biāo)為(1,﹣),再判斷△OBF為頂角為120°的等腰三角形,討論當(dāng)AM=AO=2點(diǎn)M與點(diǎn)C重合,BOF與△AOM相似,易得此時M點(diǎn)的坐標(biāo);當(dāng)OM=OA點(diǎn)M與點(diǎn)C關(guān)于直線x=1對稱,BOF與△AOM相似易得此時M點(diǎn)坐標(biāo);當(dāng)MA=MO點(diǎn)M為拋物線的頂點(diǎn)時,OAM=120°,可判斷△BOF與△AOM相似,從而得到此時M點(diǎn)的坐標(biāo).

          詳解:(1)作CHx,如圖②

          ∵△CDE和△OAB為全等的等邊三角形,而三角板CDE繞邊AB的中點(diǎn)GG點(diǎn)也是DE的中點(diǎn)),按順時針方向旋轉(zhuǎn)180°得到△CEDAC′=OA=2,OAB=BAC′=60°,∴∠CAH=60°,AH=AC′=1,CH=AH=,C′(3,);

          2)設(shè)拋物線解析式為y=axx2),C′(3,)代入得a31=,解得a=∴拋物線解析式為y=xx2),y=x2x

          3BF為⊙G的切線,ABBF,而∠FAB=60°,FA=2AB=4,F(﹣2,0).

          OB=OA=AC′=BC′=2,∴四邊形AOBC為菱形,B1,),設(shè)直線BF的解析式為y=kx+b,F(﹣2,0),B1,)代入得,解得∴直線BF的解析式為y=x+;

          4)存在.

          拋物線的對稱軸為直線x=1,當(dāng)x=1,y=x2x=﹣,則拋物線的頂點(diǎn)坐標(biāo)為(1,﹣).

          OF=OB=2,∴△OBF為頂角為120°的等腰三角形當(dāng)AM=AO=2,點(diǎn)M與點(diǎn)C重合,BOF與△AOM相似,此時M3),當(dāng)OM=OA點(diǎn)M與點(diǎn)C關(guān)于直線x=1對稱,BOF與△AOM相似,此時M(﹣1,),當(dāng)MA=MO點(diǎn)M為拋物線的頂點(diǎn)時,OAM=120°,BOF與△AOM相似,此時M1,﹣).

          綜上所述滿足條件的M點(diǎn)的坐標(biāo)為(3,)或(﹣1,)或(1,﹣).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】8分)已知A4,m+10)、Bn,4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點(diǎn).

          (1)求一次函數(shù)和反比例函數(shù)的解析式;

          (2)求△AOB的面積;

          3)觀察圖象,直接寫出不等式kx+b0的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校修建運(yùn)動場,讓甲工程隊(duì)單獨(dú)做需要15天完成,讓乙工程隊(duì)單獨(dú)做需要10天完成.

          1)如果讓甲、乙工程隊(duì)合做3天后,剩下的工程由乙工程隊(duì)完成,還需要多少天?

          2)已知甲隊(duì)每天的費(fèi)用為1000元,乙隊(duì)每天的費(fèi)用為1600 元,從節(jié)約資金的角度,認(rèn)為是甲、乙隊(duì)單獨(dú)做,還是兩隊(duì)合做完成?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某工廠現(xiàn)有甲種原料263千克,乙種原料314千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共100件.生產(chǎn)一件產(chǎn)品所需要的原料及生產(chǎn)成本如下表所示:

          甲種原料(單位:千克)

          乙種原料(單位:千克)

          生產(chǎn)成本(單位:元)

          A產(chǎn)品

          3

          2

          120

          B產(chǎn)品

          2.5

          3.5

          200

          1)該工廠現(xiàn)有的原料能否保證生產(chǎn)需要?若能,有幾種生產(chǎn)方案?請你設(shè)計(jì)出來.

          2)設(shè)生產(chǎn)A、B兩種產(chǎn)品的總成本為y元,其中生產(chǎn)A產(chǎn)品x件,試寫出yx之間的函數(shù)關(guān)系,并利用函數(shù)的性質(zhì)說明(1)中哪種生產(chǎn)方案總成本最低?最低生產(chǎn)總成本是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市某中學(xué)為推進(jìn)書香校園建設(shè),在全校范圍開展圖書漂流活動,現(xiàn)需要購進(jìn)一批甲、乙兩種規(guī)格的漂流書屋放置圖書.已知一個甲種規(guī)格的漂流書屋的價格比一個乙種規(guī)格的漂流書屋的價格高80元;如果購買2個甲種規(guī)格的漂流書屋和3個乙種規(guī)格的漂流書屋,一共需要花費(fèi)960元.

          1)求每個甲種規(guī)格的漂流書屋和每個乙種規(guī)格的漂流書屋的價格分別是多少元?

          2)如果學(xué)校計(jì)劃購進(jìn)這兩種規(guī)格的漂流書屋共15個,并且購買這兩種規(guī)格的漂流書屋的總費(fèi)用不超過3040元,那么該學(xué)校至多能購買多少個甲種規(guī)格的漂流書屋?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解甲、乙兩家快遞公司比較合適,甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi),乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.

          (1)當(dāng)x>1時,請分別直接寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;

          (2)在(1)的條件下,小明選擇哪家快遞公司更省錢?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(探究與證明)

          在正方形ABCD中,G是射線AC上一動點(diǎn)(不與點(diǎn)A、C重合),連BG,作BHBG,且使BHBG,連GHCH

          1)若GAC上(如圖1),則:①圖中與△ABG全等的三角形是   

          ②線段AG、CG、GH之間的數(shù)量關(guān)系是   

          2)若GAC的延長線上(如圖2),那么線段AG、CG、BG之間有怎樣的數(shù)量關(guān)系?寫出結(jié)論并給出證明;

          (應(yīng)用)(3)如圖3G在正方形ABCD的對角線CA的延長線上,以BG為邊作正方形BGMN,若AG2,AD4,請直接寫出正方形BGMN的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列圖形中,能用,表示同一個角的是(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,邊長為2的正方形ABCD中,AE平分∠DAC,AECD于點(diǎn)FCEAE,垂足為點(diǎn)E,EGCD,垂足為點(diǎn)G,點(diǎn)H在邊BC上,BH=DF,連接AHFH,FHAC交于點(diǎn)M,以下結(jié)論:

          FH=2BH;ACFHSACF=1;CE=AF=FGDG,其中正確結(jié)論的個數(shù)為(  )

          A. 2 B. 3 C. 4 D. 5

          查看答案和解析>>

          同步練習(xí)冊答案