日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,△ABC中,∠C=90°,BC=5,AC=12,點P從點C出發(fā),以每秒1個單位長度的速度向點B作勻速運動,到達(dá)點B后,立刻以原速度返回,到達(dá)C后再返回,如此循環(huán);點Q同時從點B出發(fā),向點A以每秒1個單位長度的速度勻速運動,到達(dá)點A時停止運動,當(dāng)點Q停止運動時點P也停止運動.設(shè)點P、Q運動的時間為t秒(t>0),
          (1)當(dāng)t=2時,BP=______,Q到BC的距離是______;
          (2)在點P第一次向B運動的過程中,求四邊形ACPQ的面積與t的函數(shù)關(guān)系式(不寫t的取值范圍);
          (3)在點P、Q運動的過程中,四邊形ACPQ能否成為直角梯形?若能,請直接寫出t的值;若不能,請說明理由.

          【答案】分析:(1)由已知可得:BP=BC-PC=5-t,即可求得BP的長;過點Q作QD⊥BC于D,易證:△BDQ∽△BCA,由相似三角形的對應(yīng)邊成比例,即可求得DQ的長,即是Q到BC的距離;
          (2)首先根據(jù)(1)中的知識,求得QD的長,又由S四邊形ACPQ=S△ABC-S△BPQ,代入求值即可得到答案;
          (3)由相似三角形的對應(yīng)邊成比例,即可求得t的值.
          解答:解:(1)由題意得:PC=t,BP=BC-PC=5-t,
          ∴當(dāng)t=2時,BP=3,
          過點Q作QD⊥BC于D,
          ∵∠C=90°,
          ∴QD∥AC,
          ∴△BDQ∽△BCA,
          ,
          ∵BC=5,AC=12,BQ=t=2,
          ∴AB==13,

          ∴DQ=;
          ∴Q到BC的距離是
          故答案為:3,

          (2)過Q作QD⊥BC于D,由△QBD∽△ABC,
          可得:QD=,
          ∴S四邊形ACPQ=S△ABC-S△BPQ=×5×12-(5-t)•=t2-t+30;

          (3)能,
          當(dāng)PQ∥AC時,四邊形ACPQ能成為直角梯形,
          ∴∠QPB=∠C=90°,
          ∵BQ=t,BP=5-t,PQ=t,
          ∵BQ2=BP2+PQ2,
          ∴t=,
          ∵點Q到達(dá)A需13s,
          同理:當(dāng)P從B返回時,由B→C,
          BQ=t,BP=t-5,PQ=t,
          即可求得t=,
          當(dāng)P從C第二次向B運動時,
          BQ=t,BP=15-t,PQ=t,
          即可求得t=,
          ∴t=,
          ∴t的值為
          點評:此題考查了相似三角形的判定與性質(zhì),勾股定理以及三角形面積的求解等知識.此題綜合性較強,難度適中,注意數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
          求證:∠A=∠B.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
          求:∠1+∠2+∠3+∠4.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
          求證:∠ANM=∠B.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
          (1)求∠2的度數(shù);
          (2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案