日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2006•漳州)已知△ABC內(nèi)接于⊙O,OD⊥AC于D,如果∠COD=32°,那么∠B的度數(shù)為( )
          A.16°
          B.32°
          C.16°或164°
          D.32°或148°
          【答案】分析:等腰△AOC中,由于OD⊥AC,根據(jù)等腰三角形三線合一的特性可得OD平分頂角∠AOC.由此可求出∠AOC的度數(shù).然后分兩種情況討論:
          ①∠B是銳角,此時(shí)∠B和圓心角∠AOC所對(duì)的弧相同,根據(jù)圓周角定理可求出∠B的度數(shù);
          ②∠B是鈍角,根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ),可求出此時(shí)∠B的度數(shù).
          解答:解:如圖;
          ∵△OAC是等腰三角形,OD⊥AC,
          ∴OD是∠ADC的平分線,(等腰三角形三線合一)
          ∴∠AOC=2∠COD=64°;
          ①當(dāng)點(diǎn)B在優(yōu)弧AC上時(shí),由圓周角定理知,∠B=∠AOC=32°;
          ②當(dāng)點(diǎn)B在如圖點(diǎn)E的位置時(shí),由圓內(nèi)接四邊形的對(duì)角互補(bǔ)知,∠E=180°-∠B=148°;
          故選D.
          點(diǎn)評(píng):本題考查垂弦定理、圓內(nèi)接四邊形的性質(zhì)、圓心角、圓周角的應(yīng)用能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

          (2006•漳州)已知△ABC,∠BAC=90°,AB=AC=4,BD是AC邊上的中線,分別以AC,AB所在直線為x軸,y軸建立直角坐標(biāo)系(如圖).
          (1)在BD所在直線上找出一點(diǎn)P,使四邊形ABCP為平行四邊形,畫出這個(gè)平行四邊形,并簡(jiǎn)要敘述其過程;
          (2)求直線BD的函數(shù)關(guān)系式;
          (3)直線BD上是否存在點(diǎn)M,使△AMC為等腰三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年福建省漳州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

          (2006•漳州)已知△ABC,∠BAC=90°,AB=AC=4,BD是AC邊上的中線,分別以AC,AB所在直線為x軸,y軸建立直角坐標(biāo)系(如圖).
          (1)在BD所在直線上找出一點(diǎn)P,使四邊形ABCP為平行四邊形,畫出這個(gè)平行四邊形,并簡(jiǎn)要敘述其過程;
          (2)求直線BD的函數(shù)關(guān)系式;
          (3)直線BD上是否存在點(diǎn)M,使△AMC為等腰三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年浙江省名校中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:填空題

          (2006•漳州)如圖,已知⊙O中,MN是直徑,AB是弦,MN⊥BC,垂足為C,由這些條件可推出結(jié)論    (不添加輔助線,只寫出1個(gè)結(jié)論).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年福建省漳州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

          (2006•漳州)如圖,已知AB是⊙O的直徑,AC是弦,過點(diǎn)O作OD⊥AC于D,連接BC.
          (1)求證:OD=BC;
          (2)若∠BAC=40°,求的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案