日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖:

          (1)(問題背景)如圖1,等腰△ABC,AB=AC,BAC=120°,則=________.

          (2)(遷移應用)如圖2,△ABC和△ABE都是等腰三角形,∠BAC=DAE=120°,D,E,C三點在同-條直線上,連結BD.求線段AD,BD,CD之間的數(shù)量關系式;

          (3)(拓展延伸)如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關于BM的對稱點E,連結AE并延長交BM于點F,連結CE, CF.若AE=4,CE=1.求BF的長.

          【答案】(1);(2)CD=AD+BD;(3)2.

          【解析】

          問題背景:作ADBCD,根據(jù)等腰三角形的性質得到BD=CD,根據(jù)三角形內角和定理求出∠ABC,根據(jù)余弦的定義計算即可;

          遷移應用:證明DAB≌△EAC,根據(jù)全等三角形的性質得到BD=CE,由問題背景得到CD、ADBD的關系;

          拓展延伸:作BGAEG,連接BE.由BM垂直平分CE,可得∠EBF=CBF,再根據(jù)AB=BE,BGAE,可得∠ABG=EBG,進而得出∠GBF=ABC=60°,在四邊形BCEG中,求得∠CEG=120°,得到∠CEF=60°,依據(jù)FE=FC,得到EFC是等邊三角形,由AE=4EC=EF=1,可得AG=GE=2,FG=3,再根據(jù)在RtBGF中,∠BFG=30°,即可得到BF

          問題背景:如圖1,作ADBCD,

          AB=AC,∠BAC=120°,

          BD=CD,∠ABC=30°,

          cosB=,即,

          BC=AB,即,

          故答案為;

          遷移應用:如圖2,∵∠BAC=DAE,

          ∴∠DAB=EAC,

          DABEAC中,

          ,

          ∴△DAB≌△EACSAS),

          BD=CE

          由問題背景可知,DE=AD

          CD=DE+EC=AD+BD;

          拓展延伸:證明:如圖3,作BGAEG,連接BE,

          E、C關于BM對稱,

          BC=BE,FE=FC,BFCE,

          ∴∠EBF=CBF

          ∵在菱形ABCD中,AB=BC,∠ABC=120°

          AB=BE,又BGAE

          ∴∠ABG=EBG,

          ∴∠EBG+EBF=ABC=60°

          ∴四邊形BNEG中,∠CEG=360°-90°-90°-60°=120°

          ∴∠CEF=60°,又FE=FC,

          ∴△EFC是等邊三角形,

          AE=4,EC=EF=1,

          AG=GE=2,FG=3,

          RtBGF中,∠BFG=30°,

          BF==2

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】己知:如圖,在平面直角坐標系中,直線軸、軸分別交于兩點,是直線上一動點,⊙的半徑為2

          1)判斷原點與⊙的位置關系,并說明理由;

          2)當⊙軸相切時,求出切點的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】定義:形如y|G|G為用自變量表示的代數(shù)式)的函數(shù)叫做絕對值函數(shù).

          例如,函數(shù)y|x1|y,y|x2+2x+3|都是絕對值函數(shù).

          絕對值函數(shù)本質是分段函數(shù),例如,可以將y|x|寫成分段函數(shù)的形式:

          探索并解決下列問題:

          1)將函數(shù)y|x1|寫成分段函數(shù)的形式;

          2)如圖1,函數(shù)y|x1|的圖象與x軸交于點A1,0),與函數(shù)y的圖象交于B,C兩點,過點Bx軸的平行線分別交函數(shù)y,y|x1|的圖象于D,E兩點.求證ABE∽△CDE;

          3)已知函數(shù)y|x2+2x+3|的圖象與y軸交于F點,與x軸交于M,N兩點(點M在點N的左邊),點P在函數(shù)y|x2+2x+3|的圖象上(點P與點F不重合),PHx軸,垂足為H.若PMHMOF相似,請直接寫出所有符合條件的點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:

          1)此次共調查了多少人?

          2)求體育社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);

          3)請將條形統(tǒng)計圖補充完整;

          4)若該校有3000名學生,請估計喜歡文學類社團的學生有多少人?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為4cm,點EF分別是BC,CD的中點,連結BF,DE,則圖中陰影部分的面積是________cm2.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,BC,D四個等級,并將結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.

          請你根據(jù)統(tǒng)計圖解答下列問題:

          1)參加比賽的學生共有____名;

          2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;

          3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】小夏同學從家到學校有,兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:

          公交車用時

          頻數(shù)

          公交車路線

          總計

          59

          151

          166

          124

          500

          43

          57

          149

          251

          500

          據(jù)此估計,早高峰期間,乘坐線路用時不超過35分鐘的概率為__________,若要在40分鐘之內到達學校,應盡量選擇乘坐__________(填)線路.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABC的三個頂點都在邊長為1的小正方形組成的網(wǎng)格的格點上,以點O為原點建立直角坐標系,回答下列問題:

          (1)將ABC先向上平移5個單位,再向右平移1個單位得到△A1B1C1,畫出△A1B1C1,并直接寫出A1的坐標   ;

          (2)將△A1B1C1繞點(0,﹣1)順時針旋轉90°得到△A2B2C2,畫出A2B2C2;

          (3)觀察圖形發(fā)現(xiàn),A2B2C2是由ABC繞點   順時針旋轉   度得到的.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知拋物線yax2bxca≠0)的對稱軸為直線x2,與x軸的一個交點坐標為(40),其部分圖象如圖所示,下列結論正確的是(  )

          A.x2時,yx增大而增大B.abc0

          C.拋物線過點(-4,0D.4ab0

          查看答案和解析>>

          同步練習冊答案