日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2011•梅州)如圖,已知拋物線y=x2-4x+3與x 軸交于兩點(diǎn)A、B,其頂點(diǎn)為C.
          (1)對于任意實(shí)數(shù)m,點(diǎn)M(m,-2)是否在該拋物線上?請說明理由;
          (2)求證:△ABC是等腰直角三角形;
          (3)已知點(diǎn)D在x軸上,那么在拋物線上是否存在點(diǎn)P,使得以B、C、D、P為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
          分析:(1)假如點(diǎn)M(m,-2)在該拋物線上,則-2=m2-4m+3,通過變形為:m2-4m+5=0,由根的判別式就可以得出結(jié)論.
          (2)如圖,根據(jù)拋物線的解析式求出點(diǎn)C的坐標(biāo),再利用勾股定理求出AB、AC和BC的值,由勾股定理的逆定理就可以得出結(jié)論.
          (3)假設(shè)存在點(diǎn)P,根據(jù)對角線互相平分的四邊形是平行四邊形,因此連接點(diǎn)P與點(diǎn)C的線段應(yīng)被x軸平分,就可以求得P點(diǎn)的縱坐標(biāo)為1,代入拋物線的解析式就可以求出P點(diǎn)的橫坐標(biāo).
          解答:解:(1)假如點(diǎn)M(m,-2)在該拋物線上,
          ∴-2=m2-4m+3,
          ∴m2-4m+5=0,
          ∴△=(-4)2-4×1×5=-4<0,
          ∴此方程無實(shí)數(shù)解,
          ∴點(diǎn)M(m,-2)不會(huì)在該拋物線上;

          (2)過點(diǎn)C作CH⊥x軸,交x軸與點(diǎn)H,連接CA、CB,
          如圖,當(dāng)y=0時(shí),x2-4x+3=0,x1=1,x2=3,由于點(diǎn)A在點(diǎn)B左側(cè),
          ∴A(1,0),B(3,0)
          ∴OA=1,OB=3,
          ∴AB=2
          ∵y=x2-4x+3
          ∴y=(x-2)2-1,
          ∴C(2,-1),
          ∴AH=BH=CH=1
          在Rt△AHC和Rt△BHC中,由勾股定理得,
          AC=
          2
          ,BC=
          2
          ,
          ∴AC2+BC2=AB2,
          ∴△ABC是等腰直角三角形;

          (3)存在這樣的點(diǎn)P.
          根據(jù)對角線互相平分的四邊形是平行四邊形,因此連接點(diǎn)P與點(diǎn)C的線段應(yīng)被x軸平分,
          ∴點(diǎn)P的縱坐標(biāo)是1,
          ∵點(diǎn)P在拋物線y=x2-4x+3上,
          ∴當(dāng)y=1時(shí),即x2-4x+3=1,解得x1=2-
          2
          ,x2=2+
          2
          ,
          ∴點(diǎn)P的坐標(biāo)是(2-
          2
          ,1)或(2+
          2
          ,1).
          點(diǎn)評:本題是一道二次函數(shù)的綜合試題,考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,勾股定理的逆定理的運(yùn)用,根的判別式的使用,平行四邊形的判定及性質(zhì).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•梅州)如圖,點(diǎn)P在平行四邊形ABCD的CD邊上,連接BP并延長與AD的延長線交于點(diǎn)Q.
          (1)求證:△DQP∽△CBP;
          (2)當(dāng)△DQP≌△CBP,且AB=8時(shí),求DP的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•梅州)如圖,在 Rt△ABC中,∠B=90°.ED是AC的垂直平分線,交AC于點(diǎn)D,交BC于點(diǎn)E,已知∠BAE=30°,則∠C的度數(shù)為
          30
          30
          °.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•梅州)如圖,在平面直角坐標(biāo)系中,點(diǎn)A(-4,4),點(diǎn)B(-4,0),將△ABO繞原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)135°得到△A1B1O.回答下列問題:(直接寫結(jié)果)
          (1)∠AOB=
          45
          45
          °;
          (2)頂點(diǎn)A從開始到A1經(jīng)過的路徑長為
          3
          2
          π
          3
          2
          π

          (3)點(diǎn)B1的坐標(biāo)為
          (2
          2
          ,2
          2
          (2
          2
          ,2
          2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•梅州)如圖,等腰梯形ABCD中,AB∥CD,AD=BC.將△ACD沿對角線AC翻折后,點(diǎn)D恰好與邊AB的中點(diǎn)M重合.
          (1)點(diǎn)C是否在以AB為直徑的圓上?請說明理由;
          (2)當(dāng)AB=4時(shí),求此梯形的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•梅州)如圖1,已知線段AB的長為2a,點(diǎn)P是AB上的動(dòng)點(diǎn)(P不與A,B重合),分別以AP、PB為邊向線段AB的同一側(cè)作正△APC和正△PBD.
          (1)當(dāng)△APC與△PBD的面積之和取最小值時(shí),AP=
          a
          a
          ;(直接寫結(jié)果)
          (2)連接AD、BC,相交于點(diǎn)Q,設(shè)∠AQC=α,那么α的大小是否會(huì)隨點(diǎn)P的移動(dòng)面變化?請說明理由;
          (3)如圖2,若點(diǎn)P固定,將△PBD繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于180°),此時(shí)α的大小是否發(fā)生變化?(只需直接寫出你的猜想,不必證明)

          查看答案和解析>>

          同步練習(xí)冊答案