日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)y=mx2+(m-3)x-3  (m>0)
          (1)求證:它的圖象與x軸必有兩個不同的交點;
          (2)這條拋物線與x軸交于A(x1,0)和B(x2,0)(x1<x2),與y軸交于點C,且AB=4,⊙M過A、B、C三點,求扇形MAC的面積S;
          (3)在(2)的條件下,拋物線上是否存在點P使△PBD(PD垂直于x軸,垂足為D)被直線BC分成面積比為1:2的兩部分?若存在,請求出點P的坐標;若不存在,請說明理由.

          【答案】分析:(1)要證明拋物線與x軸有兩個不同的交點,只要證明△>就可以了.
          (2)根據(jù)拋物線的解析式,可表示出A、B的坐標,根據(jù)AB=4,可求出m的值,從而確定該拋物線的解析式,即可得到A、B、C的坐標;根據(jù)B、C的坐標,可得到∠OBC=45°,根據(jù)圓周角定理知∠AMC=90°,即△AMC是等腰直角三角形,AC的長易求得,即可得到半徑AM、MC的長,利用扇形的面積公式,即可求得扇形AMC的面積.
          (3)設PD與BC的交點為E,此題可分成兩種情況考慮:
          ①當△BPE的面積是△BDE的2倍時,由于△BDE和△BPD同高不等底,那么它們的面積比等于底邊的比,即DE=PD,可設出P點的坐標,那么E點的縱坐標是P點縱坐標的,BD的長為B、P橫坐標差的絕對值,由于∠OBC=45°,那么BD=DE,可以此作為等量關系求出P點的坐標;
          ②當△BDE的面積是△BPE的2倍時,方法同①.
          解答:解:(1)∵二次函數(shù)y=mx2+(m-3)x-3  (m>0)
          ∴△=(m-3)2-4(-3)m
          =m2-6m+9+12m
          =m2+6m+9
          =(m+3)2
          ∵m>0,
          ∴m+3>3,
          ∴(m+3)2>9,
          ∴(m+3)2>0,
          ∴拋物線與x軸有兩個不同的交點.

          (2)∵y=mx2+(m-3)x-3=(mx-3)(x+1),
          ∴x1=-1,x2=
          ∴AB=-(-1)=4,
          即m=1;
          ∴y=x2-2x-3,
          得A(-1,0)、B(3,0)、C(0,-3),
          ∴∠OBC=45°,∠AMC=90°,
          ∵AC==,
          ∵AM=CM,
          ∴AM==,
          ∴R=,S=π.

          (3)設PD與BC的交點為E,知道B點、C點的坐標,設直線BC的解析式為y=kx+b,則有:
          ,解得:
          ∴直線BC解析式為:y=x-3,
          設P(x,x2-2x-3);當S△BED:S△BEP=1:2時,PD=3DE,
          得-(x2-2x-3)=-3(x-3),解得x=2或3,
           或(舍去)
          ∴P(2,-3);
          當S△PBE:S△BED=1:2時,同理可得P(,-),
          故存在P(2,-3)或P(,-).
          點評:此題是二次函數(shù)的綜合類題目,考查了拋物線的圖象與x軸交點坐標的判定、二次函數(shù)解析式的確定、圓周角定理的運用、扇形面積的計算方法以及圖形面積的求法等知識,綜合性強,難度稍大.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          已知二次函數(shù)y=2x2-mx-4的圖象與x軸的兩個交點的橫坐標的倒數(shù)和為2,則m=
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知二次函數(shù)y=0.5x2+mx+n的圖象過點A(-3,6),并與x軸交于點B(-1,0)和精英家教網(wǎng)點C,頂點為P.
          (1)求這個拋物線的解析式;
          (2)求線段PC的長;
          (3)設D為線段OC上的一點,且∠DPC=∠BAC,求點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知二次函數(shù)y=ax2+bx+c與一次函數(shù)y=mx+n的圖象交點為(-1,2),(2,5),且二次函數(shù)的最小值為1,則這個二次函數(shù)的解析式為
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知二次函數(shù)y=-
          1
          2
          x2+mx+
          3
          2
          的圖象經過點A(-3,-6),并且該拋物線與x軸交于B、C兩點,與y軸的交點為E,P為拋物線的頂點.如圖所示.
          (1)求這個二次函數(shù)表達式.
          (2)設點D為線段OC上的一點,且滿足∠DPC=∠BAC,說明直線PC與直線AC的位置關系,并求出點D的坐標.
          (3)在(1)中的拋物線上是否存在一點F,使S△BCF=
          3
          4
          S△BCP?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知二次函數(shù)y+x2+mx+m-2,說明:無論m取何實數(shù),拋物線總與x軸有兩個交點.

          查看答案和解析>>

          同步練習冊答案