日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】甲、乙兩名隊員參加射擊訓(xùn)練,每人射擊10次,成績分別如下:

          根據(jù)以上信息,整理分析數(shù)據(jù)如下:

          1)填空:a  ;b  c  ;

          2)從平均數(shù)和中位數(shù)的角度來比較,成績較好的是  ;(填

          3)若需從甲、乙兩名隊員中選擇一人參加比賽,你認為選誰更加合適?請說明理由.

          【答案】1a7b7.5;c4.2;(2)乙 ;(3)選擇乙參加比賽,理由見解析.

          【解析】

          1)根據(jù)加權(quán)平均數(shù)、中位數(shù)、方差的定義分別計算即可解決問題;
          2)由表中數(shù)據(jù)可知,甲、乙平均成績相等,乙的中位數(shù)大于甲,說明乙的成績好于甲;

          3)雖然乙的方差大于甲,但乙的成績呈上升趨勢,故應(yīng)選乙隊員參賽.

          解:(1

          乙的成績從低到高排列為:3,4,67,7,88,89,10,

          所以中位數(shù)

          故答案為:7,7.54.2.

          2)由表中數(shù)據(jù)可知,甲、乙平均成績相等,乙的中位數(shù)大于甲,說明乙的成績好于甲,

          故答案為:乙;

          3)選擇乙參加比賽,理由:

          甲、乙平均成績相等,乙的中位數(shù)和眾數(shù)都大于甲,說明乙的成績好于甲,雖然乙的方差大于甲,但乙的成績呈上升趨勢,故應(yīng)選乙隊員參賽.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某人為了測量小山頂上的塔ED的高,他在山下的點A處測得塔尖點D的仰角為45°,再沿AC方向前進60 m到達山腳點B,測得塔尖點D的仰角為60°,塔底點E的仰角為30°,求塔ED的高度.(結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,ACB=90°,AC=8,BC=6,CDAB于點D.點P從點D 出發(fā),沿線段DC向點C運動,點Q從點C出發(fā),沿線段CA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度,當(dāng)點P運動到C時,兩點都停止.設(shè)運動時間為t秒.

          1)求線段CD的長;

          2)當(dāng)t為何值時,CPQ是直角三角形?

          3)是否存在某一時刻,使得PQACD的面積為111?若存在,求出t的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2018年我國科技實力進一步增強,嫦娥探月、北斗組網(wǎng)、航母海試、鯤龍擊水、港珠澳大橋正式通車……,這些成就的取得離不開國家對科技研發(fā)的大力投入.下圖是2014—2018年我國研究與試驗發(fā)展(R&D)經(jīng)費支出及其增長速度情況. 2018年我國研究與試驗發(fā)展(R&D)經(jīng)費支出為19657億元,比上年增長11.6%,其中基礎(chǔ)研究經(jīng)費1118億元.

          根據(jù)統(tǒng)計圖提供的信息,下列說法中合理的是(

          A. 2014—2018年,我國研究與試驗發(fā)展(R&D)經(jīng)費支出的增長速度始終在增加

          B. 2014—2018年,我國研究與試驗發(fā)展(R&D)經(jīng)費支出增長速度最快的年份是2017

          C. 2014—2018年,我國研究與試驗發(fā)展(R&D)經(jīng)費支出增長最多的年份是2017

          D. 2018年,基礎(chǔ)研究經(jīng)費約占該年研究與試驗發(fā)展( (R&D)經(jīng)費支出的10%

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+2ax+2

          1)求拋物線的對稱軸(用含a的代數(shù)式表示)

          2)若點A(﹣1,3)向右平移4個長度單位,得到點B

          ①若拋物線經(jīng)過點B,求a的值;

          ②拋物線與線段AB恰有一個交點,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù):

          萊昂哈德歐拉(LeonhardEuler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面就是歐拉發(fā)現(xiàn)的一個定理:在△ABC中,Rr分別為外接圓和內(nèi)切圓的半徑,OI分別為其中外心和內(nèi)心,則OI2R22Rr

          如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙IAB相切于點F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內(nèi)心I(三角形三條角平分線的交點)之間的距離OId,則有d2R22Rr

          下面是該定理的證明過程(部分):

          延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN

          ∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等).

          ∴△MDI∽△ANI

          ,

          IAIDIMIN,①

          如圖2,在圖1(隱去MDAN)的基礎(chǔ)上作⊙O的直徑DE,連接BEBD,BIIF

          DE是⊙O的直徑,所以∠DBE90°

          ∵⊙IAB相切于點F,所以∠AFI90°

          ∴∠DBE=∠IFA

          ∵∠BAD=∠E(同弧所對的圓周角相等),

          ∴△AIF∽△EDB

          IABDDEIF

          任務(wù):(1)觀察發(fā)現(xiàn):IMR+d,IN  (用含Rd的代數(shù)式表示);

          2)請判斷BDID的數(shù)量關(guān)系,并說明理由.

          3)請觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;

          4)應(yīng)用:在RtABC,C90°,AC=6cm, BC=8cm,OAB中點,點I是△ABC的內(nèi)心,則OI=  cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某文具店購進一批紀(jì)念冊,每本進價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.

          (1)求出y與x的函數(shù)關(guān)系式;

          (2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?

          (3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)

          (1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?

          (2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進行防銹處理,側(cè)面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內(nèi)心,過點E作EF∥AB交AC于點F,則EF的長為( )

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊答案