【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為F,CG⊥AE,交弦AE的延長線于點G,且CG=CF.
(1)求證:CG是⊙O的切線;
(2)若AE=2,EG=1,求由弦BC和所圍成的弓形的面積.
【答案】(1)見解析;(2)
【解析】
(1)連接OC得∠ACO=∠BAC,證明Rt△ACG≌Rt△ACF得∠CAG=∠CAB,所以∠ACO=∠CAG,故OC∥AG,可證明∠OCG+∠G=180°,進而可得結論;
(2) 過點O作OM⊥AE,得AM=ME=1,再證明四邊形OCGM為矩形得OC=2,從而可求得OF=1,進而得∠COF=60°,再根據(jù)S弓形BC=S扇形OBC- S△OBC求解即可.
(1)證明:連接OC.
∴OA=OC
∴∠ACO=∠BAC
∵CD⊥AB,CG⊥AE,
∴∠CGA=∠CFA=90°
∵CG=CF,AC=AC
∴Rt△ACG≌Rt△ACF
∴∠CAG=∠CAB,
∴∠ACO=∠CAG
∴OC∥AG,
∴∠OCG+∠G=180°
∵∠CGA=90°
∴∠OCG=90°,即,
∴CG是⊙O的切線.
(2)過點O作OM⊥AE,垂足為M,
則AM=ME=AE=1,∠OMG=∠OCG=∠G=90°.
∴四邊形OCGM為矩形,
∴OC=MG=ME+EG=2.
在Rt△AGC和Rt△AFC中
∴Rt△AGC≌Rt△AFC,
∴AF=AG=AE+EG=3,
∴OF=AF-OA=1,
在Rt△COF中,
∵cos∠COF==
.
∴∠COF=60°,CF=OC·sin∠COF=2×=
,
∴S弓形BC=-
×2×
=
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,AB=2,且∠ABC=∠ABE=60°,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉60°得到BN,連接EN、AM、CM,則AM+BM+CM的最小值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與
軸交于點
,與反比例函數(shù)第一象限內(nèi)的圖象交于點
,連接
,若
.
(1)求直線的表達式和反比例函數(shù)的表達式;
(2)若直線與
軸的交點為
,求
的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.
(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=5,點E、F是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注.某校學生會為了了解垃圾分類知識的普及情況,隨機調查了部分學生,調查結果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調查結果繪制成下面兩幅統(tǒng)計圖.
(1)求:本次被調查的學生有多少名?補全條形統(tǒng)計圖.
(2)估計該校1200名學生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調查的“非常了解”的學生中有2名男生,其余為女生,從中隨機抽取2人在全校做垃圾分類知識交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸相交于點C(0,﹣4).
(1)求該二次函數(shù)的解析;
(2)若點P、Q同時從A點出發(fā),以每秒1個單位長度的速度分別沿AB、AC邊運動,其中一點到達端點時,另一點也隨之停止運動.
①當點P運動到B點時,在x軸上是否存在點E,使得以A、E、Q為頂點的三角形為等腰三角形?若存在,請求出E點的坐標;若不存在,請說明理由.
②當P、Q運動到t秒時,△APQ沿PQ翻折,點A恰好落在拋物線上D點處,請直接寫出t的值及D點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知為等邊三角形,
,點
為邊
上一點,過點
作
.交
于
點;過
點作
,交
的延長線于
點.設
,
的面積為
,則能大致反映
與
函數(shù)關系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年疫情期間,為了更好地落實“停課不停學”行動,我市某中學為了更好督促學生學習,組織教師對某班學生進行家訪,根據(jù)學生參加網(wǎng)絡學習效果劃分為(差),
(中),
(優(yōu)),
(良)四個等級,并繪制了下面不完整的統(tǒng)計圖表,根據(jù)圖表中提供的信息解答下列問題;
(1)求,
的值;
(2)求等級對應扇形圓心角的度數(shù);
(3)學校要從等級的學生中隨機選取2人參加李老師個性化輔導,用列表或畫樹狀圖求
等級中的學生小慧被選中參加輔導的概率.
效果等級 | 頻數(shù) | 頻率 |
5 | ||
0.3 | ||
20 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com