日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,點和點在數(shù)軸上對應(yīng)的數(shù)分別為,且

          1)求線段的長;

          2)點在數(shù)軸上所對應(yīng)的數(shù)為,且是方程的解,點在線段上,并且,請求出點在數(shù)軸上所對應(yīng)的數(shù);

          3)在(2)的條件下,線段分別以個單位長度/秒和個單位長度/秒的速度同時向右運動,運動時間為秒,為線段的中點,為線段的中點,若,求的值.

          【答案】(1) (2)在數(shù)軸上所對應(yīng)的數(shù)為;(3)當(dāng)t=3秒或秒時線段

          【解析】

          1)根據(jù)平方的非負性,絕對值的非負性求出a=-6,b=8,得到OA=6,OB=8,即可求出AB

          2)解方程求出x=14,得到點在數(shù)軸上所對應(yīng)的數(shù)為,設(shè)點在數(shù)軸上所對應(yīng)的數(shù)為,根據(jù),列式求出y;

          3)根據(jù)中點得到運動前兩點在數(shù)軸上所對應(yīng)的數(shù)分別為-4,11,運動秒后兩點在數(shù)軸上所對應(yīng)的數(shù)分別為-4+6t,11+5t ,再分M、N相遇前,相遇后兩種情況分別列方程求出t.

          (1)解:∵,且,

          a+6=0,b-8=0,

          a=-6,b=8,

          OA=6,OB=8,

          AB=OA+OB=6+8=14,

          (2)解方程,得

          ,

          在數(shù)軸上所對應(yīng)的數(shù)為

          設(shè)點在數(shù)軸上所對應(yīng)的數(shù)為

          在線段上,且

          ,

          ,

          解這個方程,得,

          在數(shù)軸上所對應(yīng)的數(shù)為

          (3)解:由(2)四點在數(shù)軸上所對應(yīng)的數(shù)分別為:

          運動前兩點在數(shù)軸上所對應(yīng)的數(shù)分別為-4,11

          則運動 秒后兩點在數(shù)軸上所對應(yīng)的數(shù)分別為-4+6t,11+5t ,

          線段沒有追上線段時有:(11+5t)-(-4+6t)=12

          解得: ;

          線段追上線段后有:(-4+6t)-(11+5t)=12

          解得:,

          綜合上述:當(dāng)t=3秒或秒時線段

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系 中,定義直線 與雙曲線 的交點 (m、n為正整數(shù))為 “雙曲格點”,雙曲線 在第一象限內(nèi)的部分沿著豎直方向平移或以平行于 軸的直線為對稱軸進行翻折之后得到的函數(shù)圖象為其“派生曲線”.

          (1)①“雙曲格點” 的坐標(biāo)為;
          ②若線段 的長為1個單位長度,則n=;
          (2)圖中的曲線 是雙曲線 的一條“派生曲線”,且經(jīng)過點 ,則 的解析式為 y=
          (3)畫出雙曲線 的“派生曲線”g(g與雙曲線 不重合),使其經(jīng)過“雙曲格點” 、

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,∠E∠F90°,∠B∠CAEAF.有以下結(jié)論:①EMFN;②CDDN;③∠FAN∠EAM;④△ACN≌△ABM.其中正確的有( ).

          A. 1B. 2C. 3D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC,OAC邊上的一點.過點O作直線MNBC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于F

          1)求證:EO=FO;(2)若CE=4,CF=3,你還能得到那些結(jié)論?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】

          (1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是DCP的平分線上一點.若AMN=90°,求證:AM=MN.

          下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

          證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,B=BCD=90°,AB=BC.

          ∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

          (下面請你完成余下的證明過程)

          (2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是ACP的平分線上一點,則當(dāng)AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

          (3)若將(1)中的正方形ABCD改為邊形ABCD……X,請你作出猜想:當(dāng)AMN= °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=﹣ 的圖象交于A、B兩點,與坐標(biāo)軸交于M、N兩點.且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是﹣2.

          (1)求一次函數(shù)的解析式;
          (2)求△AOB的面積;
          (3)觀察圖象,直接寫出y1>y2時x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某高校學(xué)生會發(fā)現(xiàn)同學(xué)們就餐時剩余飯菜較多,浪費嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動的重要性,校學(xué)生會在某天午餐后,隨機調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.
          (1)這次被調(diào)查的同學(xué)共有名;
          (2)把條形統(tǒng)計圖補充完整;
          (3)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供200人用一餐.據(jù)此估算,該校18 000名學(xué)生一餐浪費的食物可供多少人食用一餐?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知兩點A、B

          (1)畫出符合要求的圖形

          畫線段AB

          延長線段AB到點C,使BCAB;

          反向延長線段AB到點D,使DA2AB;

          分別取BC、AD的中點MN

          (2)(1)的基礎(chǔ)上,已知線段AB的長度是4cm,求線段MN的長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】、兩地相距,甲、乙兩車分別沿同一條路線從地出發(fā)駛往地,已知甲車的速度為,乙車的速度為,甲車先出發(fā)后乙車再出發(fā),乙車到達地后再原地等甲車.

          (1)求乙車出發(fā)多長時間追上甲車?

          (2)求乙車出發(fā)多長時間與甲車相距?

          查看答案和解析>>

          同步練習(xí)冊答案