【題目】如圖,拋物線與x軸交于點(diǎn)A(-2,0),交y軸于點(diǎn)B(0,
).直線
過點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個交點(diǎn)是D.
(1) 求拋物線與直線
的解析式;
(2)點(diǎn)P是拋物線上A、D間的一個動點(diǎn),過P點(diǎn)作PM∥CE交線段AD于M點(diǎn).
①過D點(diǎn)作DE⊥y軸于點(diǎn)E,問是否存在P點(diǎn)使得四邊形PMEC為平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
②作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長為m,點(diǎn)P的橫坐標(biāo)為x,求m關(guān)于x的函數(shù)關(guān)系式,并求出m的最大值.
【答案】(1),
;(2)① 存在,點(diǎn)P的坐標(biāo)是(2,-3)和(4,
);②
, m的最大值是15.
【解析】
(1)將點(diǎn)A和點(diǎn)B的坐標(biāo)代入拋物線的解析式可求得b、c的值,然后可求得拋物線的解析式,將點(diǎn)A的坐標(biāo)代入直線的解析式可求得k的值,從而可求得直線的解析式;
(2)①將與
聯(lián)立,可求得點(diǎn)
,然后再求得點(diǎn)
則
,設(shè)點(diǎn)
的坐標(biāo)為
,則
的坐標(biāo)是
.然后可得到
的長與
的函數(shù)關(guān)系式,然后依據(jù)
,可求得
的值,從而可得到點(diǎn)
的坐標(biāo);
②在中,依據(jù)勾股定理可知:
,則
的周長是24,接下來,證明
,依據(jù)相似三角形的周長比等于相似比可得到
與x的函數(shù)關(guān)系式,最后利用配方法可求得
的最大值.
解:(1)經(jīng)過點(diǎn)
和點(diǎn)
,
,
解得,
拋物線的解析式為
,
直線
經(jīng)過點(diǎn)
,
,解得:
.
直線的解析式為
;
(2)①將與
聯(lián)立,解得
或
,
將代入
得:
,
,
將代入
得:
,
,
,
設(shè)點(diǎn)的坐標(biāo)為
,則
的坐標(biāo)是
,
點(diǎn)
在直線
的下方,
,
四邊形
為平行四邊形,
,
,解得
或
,
當(dāng)時,
,當(dāng)
時,
,
當(dāng)點(diǎn)
的坐標(biāo)為
或
時,四邊形
為平行四邊形;
②在中,
,
,
依據(jù)勾股定理可知:,
的周長是24,
軸,
,
又,
,
,即
,
化簡整理得:,
配方得:,
當(dāng)
時,
有最大值,
的最大是15.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1,O2,O3,… 組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,速度為每秒個單位長度,則第2015秒時,點(diǎn)P的坐標(biāo)是( ).
A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的對稱軸為直線
,且拋物線與
軸交于
、
兩點(diǎn),與
軸交于
點(diǎn),其中
,
.
(1)若直線經(jīng)過
、
兩點(diǎn),求直線
和拋物線的解析式;
(2)在拋物線的對稱軸上找一點(diǎn)
,使點(diǎn)
到點(diǎn)
的距離與到點(diǎn)
的距離之和最小,求出點(diǎn)
的坐標(biāo);
(3)設(shè)點(diǎn)為拋物線的對稱軸
上的一個動點(diǎn),求使
為直角三角形的點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,
,
,
,
是射線
上一點(diǎn),連接
,沿
將
折疊,得
.
(1)如圖所示,當(dāng)時,
_______度;
(2)如圖所示,當(dāng)時,求線段
的長度;
(3)當(dāng)點(diǎn)為
中點(diǎn)時,點(diǎn)
是邊
上不與點(diǎn)
、
重合的一個動點(diǎn),將
沿
折疊,得到
,連接
,求
周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)八年級有3000名學(xué)生參加“愛我中華”知識競賽活動,為了了解本次知識競賽的成績分布情況,從中抽取了部分學(xué)生的得分進(jìn)行統(tǒng)計.
成績x(分) | 頻數(shù) | 頻率 |
50≤x<60 | 10 | a |
60≤x<70 | 16 | 0.08 |
70≤x<80 | b | 0.20 |
請你根據(jù)以上的信息,回答下列問題:
(1) a= ,b= ;
(2) 在扇形統(tǒng)計圖中,“成績x滿足50≤x<60”對應(yīng)扇形的圓心角大小是 ;
(3) 若將得分轉(zhuǎn)化為等級,規(guī)定:50≤x<60評為D,60≤x<70評為C,70≤x<90評為B,90≤x<100評為A.這次全區(qū)八年級參加競賽的學(xué)生約有 學(xué)生參賽成績被評為“B”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十九大召開后,某社區(qū)開展了“市民對十九大的關(guān)注情況”調(diào)查,采用隨機(jī)抽樣的方法訪問了部分年齡在18周歲以上的城鄉(xiāng)居民.小聰根據(jù)調(diào)查數(shù)據(jù)繪制了如下不完整的頻數(shù)分布置表和扇形統(tǒng)計圖.請根據(jù)圖表解答下列問題.
關(guān)注情況 | 頻數(shù) |
非常關(guān)注( | 128 |
比較關(guān)注( | |
一般關(guān)注( | 80 |
不太關(guān)注( | |
不關(guān)注( | 2 |
(1)請完成頻數(shù)分布表空格數(shù)據(jù)填寫;
(2)求“非常關(guān)注”部分扇形圓心角的度數(shù);
(3)若該社區(qū)18周歲以上居民共有20000人,請估計“比較關(guān)注”和“非常關(guān)注”的居民共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,3),在第一象限內(nèi)找一點(diǎn)P(a,b) ,使△PAB為等邊三角形,則2(a-b)=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實(shí)根.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根滿足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形具有不穩(wěn)定性,如圖,在平面直角坐標(biāo)系中,矩形
的邊
在
軸上,且點(diǎn)
,邊
長為
.現(xiàn)固定邊
,向右推動矩形使點(diǎn)
落在
軸上(落點(diǎn)記為
),點(diǎn)
的對應(yīng)點(diǎn)記為
,已知矩形
與推動后形成的平行四邊形
的面積比為
,則點(diǎn)
坐標(biāo)為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com