日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標(biāo)減少,縱坐標(biāo)增大分別作為點A的橫、縱坐標(biāo);把頂點的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點B的橫、縱坐標(biāo),則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
          (1)求出當(dāng)實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
          (2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
          (3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學(xué)語言把你的猜想表達(dá)出來,并給予證明.
          【答案】分析:(1)取a=1和-1,求出兩點的坐標(biāo),用待定系數(shù)法求出直線l的解析式即可;
          (2)求出拋物線y=ax2+2x+3的頂點P坐標(biāo)為,根據(jù)其取值,即可得出不是該拋物線的頂點的坐標(biāo);
          (3)猜想:對于拋物線y=ax2+bx+c(a≠0),將其頂點的橫坐標(biāo)減少,縱坐標(biāo)增加分別作為點A的橫、縱坐標(biāo);把頂點的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點B的橫、縱坐標(biāo),則A,B兩點也在拋物線y=ax2+bx+c(a≠0)上;求出其橫、縱坐標(biāo),把橫坐標(biāo)代入函數(shù)式,驗證即可;
          解答:解:(1)取a=1,得拋物線y=x2+2x+3,
          其頂點為P1(-1,2).
          取a=-1,得拋物線y=-x2+2x+3,
          其頂點為P2(1,4).
          由題意有P1、P2在直線l上,設(shè)直線l的解析式為y=kx+b,則
          解得:
          ∴直線l的解析式為y=x+3.

          (2)∵拋物線y=ax2+2x+3的頂點P坐標(biāo)為
          顯然P在直線y=x+3上.
          能取到除0以外的所有實數(shù),
          ∴在y=x+3上僅有一點(0,3)不是該拋物線的頂點.

          (3)猜想:對于拋物線y=ax2+bx+c(a≠0),將其頂點的橫坐標(biāo)減少,縱坐標(biāo)增加分別作為點A的橫、縱坐標(biāo);把頂點的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點B的橫、縱坐標(biāo),則A,B兩點也在拋物線y=ax2+bx+c(a≠0)上.證明如下:
          ∵拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(),
          ∴點A的坐標(biāo)為
          點B的坐標(biāo)為
          時,
          ∴點A在拋物線y=ax2+bx+c(a≠0),
          同理有B也在拋物線上,故結(jié)論成立.
          點評:本題主要考查了二次函數(shù)的解析式及用待定系數(shù)法求函數(shù)的解析式,熟記二次函數(shù)的頂點坐標(biāo)公式及其性質(zhì),是正確解答的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
          (1)求拋物線的解析式;
          (2)用配方法求拋物線的頂點D的坐標(biāo)和對稱軸;
          (3)求四邊形ABDE的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
           
          ,k=
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標(biāo)為(2,-3),那么該拋物線有( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標(biāo)原點O,作OA⊥PQ,垂足為A,且OA=
          2
          ,b+ac=3.
          (1)求b的值;
          (2)求拋物線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
          (1)使用a、c表示b;
          (2)判斷點B所在象限,并說明理由;
          (3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
          ca
          ,b+8
          ),求當(dāng)x≥1時y1的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案