日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點(diǎn)D,過點(diǎn)D作⊙O的切線交BC邊于點(diǎn)E.
          (1)如圖,求證:EB=EC=ED;
          (2)試問在線段DC上是否存在點(diǎn)F,滿足BC2=4DF•DC?若存在,作出點(diǎn)F,并予以證明;若不存在,請(qǐng)說明理由.

          (1)證明:連接BD.
          由于ED、EB是⊙O的切線,由切線長(zhǎng)定理,得
          ED=EB,∠DEO=∠BEO,
          ∴OE垂直平分BD.
          又∵AB是⊙O的直徑,
          ∴AD⊥BD.
          ∴AD∥OE.
          即OE∥AC.
          又O為AB的中點(diǎn),
          ∴OE為△ABC的中位線,
          ∴BE=EC,
          ∴EB=EC=ED.

          (2)解:在△DEC中,由于ED=EC,
          ∴∠C=∠CDE,
          ∴∠DEC=180°-2∠C.
          ①當(dāng)∠DEC>∠C時(shí),有180°-2∠C>∠C,即0°<∠C<60°時(shí),在線段DC上存在點(diǎn)F
          滿足條件.
          在∠DEC內(nèi),以ED為一邊,作∠DEF,使∠DEF=∠C,且EF交DC于點(diǎn)F,則點(diǎn)F即為所求.
          這是因?yàn)椋?br/>在△DCE和△DEF中,
          ∠CDE=∠EDF,∠C=∠DEF,
          ∴△DEF∽△DCE.
          ∴DE2=DF•DC.
          即(BC)2=DF•DC
          ∴BC2=4DF•DC.
          ②當(dāng)∠DEC=∠C時(shí),△DEC為等邊三角形,即∠DEC=∠C=60°,
          此時(shí),C點(diǎn)即為滿足條件的F點(diǎn),于是,DF=DC=DE,仍有BC2=4DE2=4DF•DC.
          ③當(dāng)∠DEC<∠C時(shí),即180°-2∠C<∠C,60°<∠C<90°;所作的∠DEF>∠DEC,此時(shí)點(diǎn)
          F在DC的延長(zhǎng)線上,故線段DC上不存在滿足條件的點(diǎn)F.
          分析:(1)連接BD,已知ED、EB都是⊙O的切線,由切線長(zhǎng)定理可證得OE垂直平分BD,而BD⊥AC(圓周角定理),則OE∥AC;由于O是AB的中點(diǎn),可證得OE是△ABC的中位線,即E是BC中點(diǎn),那么Rt△BDC中,DE就是斜邊BC的中線,由此可證得所求的結(jié)論;
          (2)由(1)知:BC=2BE=2DE,則所求的比例關(guān)系式可轉(zhuǎn)化為(2=DF•DC,即DE2=DF•DC,那么只需作出與△DEC相似的△DFE即可,這兩個(gè)三角形的公共角為∠CDE,只需作出∠DEF=∠C即可;
          ①∠DEC>∠C,即180°-2∠C>∠C,0°<∠C<60°時(shí),∠DEF的EF邊與線段CD相交,那么交點(diǎn)即為所求的F點(diǎn);
          ②∠DEC=∠C,即180°-2∠C=∠C,∠C=60°時(shí),F(xiàn)與C點(diǎn)重合,F(xiàn)點(diǎn)仍在線段CD上,此種情況也成立;
          ③∠DEC<∠C,即180°-2∠C<∠C,60°<∠C<90°時(shí),∠DEF的EF邊與線段的延長(zhǎng)線相交,與線段CD沒有交點(diǎn),所以在這種情況下不存在符合條件的F點(diǎn).
          點(diǎn)評(píng):此題主要考查了直角三角形的性質(zhì)、切線長(zhǎng)定理、三角形中位線定理及相似三角形的判定和性質(zhì);(2)題一定要注意“線段DC上是否存在點(diǎn)F”的條件,以免造成多解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點(diǎn)D,過點(diǎn)D作⊙O的切線交BC邊于點(diǎn)E.
          (1)如圖,求證:EB=EC=ED;
          (2)試問在線段DC上是否存在點(diǎn)F,滿足BC2=4DF•DC?若存在,作出點(diǎn)F,并予以證明;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知:以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交精英家教網(wǎng)⊙O于E,過E作EF∥AC交BA的延長(zhǎng)線于F.AF=5,EF=10,
          (1)求證:EF是⊙O切線;
          (2)求⊙O的半徑長(zhǎng);
          (3)求sin∠CBE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點(diǎn)D,E為BC邊上的中點(diǎn),連接DE.
          (1)如圖,求證:DE是⊙O的切線;
          (2)連接OE,AE,當(dāng)∠CAB為何值時(shí),四邊形AOED是平行四邊形,并在此條件下求sin∠CAE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

          (2003•海淀區(qū))已知:以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點(diǎn)D,E為BC邊上的中點(diǎn),連接DE.
          (1)如圖,求證:DE是⊙O的切線;
          (2)連接OE,AE,當(dāng)∠CAB為何值時(shí),四邊形AOED是平行四邊形,并在此條件下求sin∠CAE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年廣東省深圳市初中畢業(yè)模擬試卷(解析版) 題型:解答題

          如圖,已知:以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長(zhǎng)線于F.AF=5,EF=10,
          (1)求證:EF是⊙O切線;
          (2)求⊙O的半徑長(zhǎng);
          (3)求sin∠CBE的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案