日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知:以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點D,過點D作⊙O的切線交BC邊于點E.
          (1)如圖,求證:EB=EC=ED;
          (2)試問在線段DC上是否存在點F,滿足BC2=4DF•DC?若存在,作出點F,并予以證明;若不存在,請說明理由.
          分析:(1)連接BD,已知ED、EB都是⊙O的切線,由切線長定理可證得OE垂直平分BD,而BD⊥AC(圓周角定理),則OE∥AC;由于O是AB的中點,可證得OE是△ABC的中位線,即E是BC中點,那么Rt△BDC中,DE就是斜邊BC的中線,由此可證得所求的結(jié)論;
          (2)由(1)知:BC=2BE=2DE,則所求的比例關系式可轉(zhuǎn)化為(
          BC
          2
          2=DF•DC,即DE2=DF•DC,那么只需作出與△DEC相似的△DFE即可,這兩個三角形的公共角為∠CDE,只需作出∠DEF=∠C即可;
          ①∠DEC>∠C,即180°-2∠C>∠C,0°<∠C<60°時,∠DEF的EF邊與線段CD相交,那么交點即為所求的F點;
          ②∠DEC=∠C,即180°-2∠C=∠C,∠C=60°時,F(xiàn)與C點重合,F(xiàn)點仍在線段CD上,此種情況也成立;
          ③∠DEC<∠C,即180°-2∠C<∠C,60°<∠C<90°時,∠DEF的EF邊與線段的延長線相交,與線段CD沒有交點,所以在這種情況下不存在符合條件的F點.
          解答:精英家教網(wǎng)(1)證明:連接BD.
          由于ED、EB是⊙O的切線,由切線長定理,得
          ED=EB,∠DEO=∠BEO,
          ∴OE垂直平分BD.
          又∵AB是⊙O的直徑,
          ∴AD⊥BD.
          ∴AD∥OE.
          即OE∥AC.
          又O為AB的中點,
          ∴OE為△ABC的中位線,
          ∴BE=EC,
          ∴EB=EC=ED.(4分)

          (2)解:在△DEC中,由于ED=EC,
          ∴∠C=∠CDE,
          ∴∠DEC=180°-2∠C.
          ①當∠DEC>∠C時,有180°-2∠C>∠C,即0°<∠C<60°時,在線段DC上存在點F
          滿足條件.
          在∠DEC內(nèi),以ED為一邊,作∠DEF,使∠DEF=∠C,且EF交DC于點F,則點F即為所求.
          這是因為:
          在△DCE和△DEF中,
          ∠CDE=∠EDF,∠C=∠DEF,
          ∴△DEF∽△DCE.
          ∴DE2=DF•DC.
          即(
          1
          2
          BC)2=DF•DC
          ∴BC2=4DF•DC.(6分)
          ②當∠DEC=∠C時,△DEC為等邊三角形,即∠DEC=∠C=60°,
          此時,C點即為滿足條件的F點,于是,DF=DC=DE,仍有BC2=4DE2=4DF•DC.(7分)
          ③當∠DEC<∠C時,即180°-2∠C<∠C,60°<∠C<90°;所作的∠DEF>∠DEC,此時點
          F在DC的延長線上,故線段DC上不存在滿足條件的點F.(8分)
          點評:此題主要考查了直角三角形的性質(zhì)、切線長定理、三角形中位線定理及相似三角形的判定和性質(zhì);(2)題一定要注意“線段DC上是否存在點F”的條件,以免造成多解.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          如圖,已知:以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交精英家教網(wǎng)⊙O于E,過E作EF∥AC交BA的延長線于F.AF=5,EF=10,
          (1)求證:EF是⊙O切線;
          (2)求⊙O的半徑長;
          (3)求sin∠CBE的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知:以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點D,E為BC邊上的中點,連接DE.
          (1)如圖,求證:DE是⊙O的切線;
          (2)連接OE,AE,當∠CAB為何值時,四邊形AOED是平行四邊形,并在此條件下求sin∠CAE的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

          (2003•海淀區(qū))已知:以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點D,E為BC邊上的中點,連接DE.
          (1)如圖,求證:DE是⊙O的切線;
          (2)連接OE,AE,當∠CAB為何值時,四邊形AOED是平行四邊形,并在此條件下求sin∠CAE的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年廣東省深圳市初中畢業(yè)模擬試卷(解析版) 題型:解答題

          如圖,已知:以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.AF=5,EF=10,
          (1)求證:EF是⊙O切線;
          (2)求⊙O的半徑長;
          (3)求sin∠CBE的值.

          查看答案和解析>>

          同步練習冊答案