日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,已知直線:與直角坐標(biāo)系xOy的x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)M為x軸正半軸上一點(diǎn),以點(diǎn)M為圓心的⊙M與直線AB相切于B點(diǎn),交x軸于C、D兩點(diǎn),與y軸交于另一點(diǎn)E.
          (1)求圓心M的坐標(biāo);
          (2)如圖2,連接BM延長交⊙M于F,點(diǎn)N為上任一點(diǎn),連DN交BF于Q,連FN并延長交x軸于點(diǎn)P.則CP與MQ有何數(shù)量關(guān)系?證明你的結(jié)論;
          (3)如圖3,連接BM延長交⊙M于F,點(diǎn)N為上一動點(diǎn),NH⊥x軸于H,NG⊥BF于G,連接GH,當(dāng)N點(diǎn)運(yùn)動時(shí),下列兩個(gè)結(jié)論:①NG+NH為定值;②GH的長度不變;其中只有一個(gè)是正確的,請你選擇正確的結(jié)論加以證明,并求出其值?

          【答案】分析:(1)根據(jù)一次函數(shù)解析式求出A,B兩點(diǎn)的坐標(biāo).進(jìn)而得出AO,BO的長,再利用射影定理求出MO的長即可得出答案;
          (2)利用圓周角定理以及等邊三角形的性質(zhì)得出△BDQ≌△MFP,進(jìn)而得到PM=BQ,從而得出CP與MQ的數(shù)量關(guān)系;
          (3)根據(jù)垂徑定理以及銳角三角函數(shù)首先得出WQ=2,進(jìn)而得出GH是△WNQ的中位線,HG=WQ=,即可得出答案.
          解答:解:(1)連接BM,
          與直角坐標(biāo)系xOy的x軸交于點(diǎn)A,與y軸交于點(diǎn)B,
          ∴A點(diǎn)橫坐標(biāo)為x:0=x+,縱坐標(biāo)為0,
          ∴x=-3,A(-3,0),
          B點(diǎn)坐標(biāo)為:(0,),
          ∴BO=,AO=3,
          ∵以點(diǎn)M為圓心的⊙M與直線AB相切于B點(diǎn),
          ∴AB⊥BM,
          ∵BO⊥AM.
          ∴BO2=AO×MO,
          3=3MO,
          ∴MO=1,
          ∴圓心M的坐標(biāo)為(1,0);

          (2)MQ=PC.
          證明:∵BO=,MO=1,
          ∴tan∠BMO=
          ∴∠BMO=60°,
          ∵BM=DM,
          ∴△BDM是等邊三角形,
          ∴BD=BM=DM,∠DBQ=60°,
          ∴∠FMP=∠BMD=60°,
          ∴∠DBQ=∠FMP=60°,
          ∵∠BDN=∠BFN,
          ∴△BDQ≌△MFP,
          ∴PM=BQ,
          ∵BM=CM,
          ∴BQ-BM=PM-MC,
          即:MQ=PC;

          (3)GH的長度不變;
          證明:延長NH到⊙一點(diǎn)Q,延長NG到圓上一點(diǎn)W,作MT⊥WQ,連接WQ,MQ,MW,MN,
          ∵NH⊥x軸于H,NG⊥BF于G,
          ∴QC=CN,GN=WQ,=,=,(垂徑定理的推論)
          ∴∠QMC=∠CMN,∠NMF=∠FMW,
          ∵由(2)得出∠DMB=∠FMC=60°,
          ∴∠WMQ=120°,WM=MQ,
          ∴QT=WT,∠TMQ=60°,
          ∵DM=MQ=2,
          ∴sin60°=,
          ∴QT=,
          ∴WQ=2,
          ∴點(diǎn)N為上一動點(diǎn),到什么位置△WMQ形狀不變,
          ∴QW=2長度不變,
          ∵H為QN的中點(diǎn),G為WN的中點(diǎn),
          ∴GH是△WNQ的中位線,
          ∴HG=WQ=,
          ∴GH的長度不變.
          點(diǎn)評:此題主要考查了圓周角定理以及全等三角形的判定和銳角三角函數(shù)等知識,所以同學(xué)們學(xué)習(xí)時(shí)一定要會把所學(xué)的知識靈活的運(yùn)用起來,延長NC到⊙一點(diǎn)Q,延長NG到圓上一點(diǎn)W,得出這兩條輔助線是解決問題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,已知直線EA與x軸、y軸分別交于點(diǎn)E和點(diǎn)A(0,2),過直線EA上的兩點(diǎn)F、G分別作x軸的垂線段,垂足分別為M(m,0)和N(n,0),其中m<0,n>0.
          (1)如果m=-4,n=1,試判斷△AMN的形狀;
          (2)如果mn=-4,(1)中有關(guān)△AMN的形狀的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請說明理由;
          (3)如圖2,題目中的條件不變,如果mn=-4,并且ON=4,求經(jīng)過M、A、N三點(diǎn)的拋物線所對應(yīng)的函數(shù)關(guān)系式;
          (4)在(3)的條件下,如果拋物線的對稱軸l與線段AN交于點(diǎn)P,點(diǎn)Q是對稱軸上一動點(diǎn),以點(diǎn)P、Q、N為頂點(diǎn)的三角形和以點(diǎn)M、A、N為頂點(diǎn)的三角形相似,求符合條件的點(diǎn)Q的坐標(biāo).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年四川省綿陽市南山中學(xué)實(shí)驗(yàn)學(xué)校自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖1,已知直線EA與x軸、y軸分別交于點(diǎn)E和點(diǎn)A(0,2),過直線EA上的兩點(diǎn)F、G分別作x軸的垂線段,垂足分別為M(m,0)和N(n,0),其中m<0,n>0.
          (1)如果m=-4,n=1,試判斷△AMN的形狀;
          (2)如果mn=-4,(1)中有關(guān)△AMN的形狀的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請說明理由;
          (3)如圖2,題目中的條件不變,如果mn=-4,并且ON=4,求經(jīng)過M、A、N三點(diǎn)的拋物線所對應(yīng)的函數(shù)關(guān)系式;
          (4)在(3)的條件下,如果拋物線的對稱軸l與線段AN交于點(diǎn)P,點(diǎn)Q是對稱軸上一動點(diǎn),以點(diǎn)P、Q、N為頂點(diǎn)的三角形和以點(diǎn)M、A、N為頂點(diǎn)的三角形相似,求符合條件的點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年中考復(fù)習(xí)針對性訓(xùn)練 綜合壓軸題(解析版) 題型:解答題

          (2009•滄浪區(qū)一模)如圖1,已知直線EA與x軸、y軸分別交于點(diǎn)E和點(diǎn)A(0,2),過直線EA上的兩點(diǎn)F、G分別作x軸的垂線段,垂足分別為M(m,0)和N(n,0),其中m<0,n>0.
          (1)如果m=-4,n=1,試判斷△AMN的形狀;
          (2)如果mn=-4,(1)中有關(guān)△AMN的形狀的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請說明理由;
          (3)如圖2,題目中的條件不變,如果mn=-4,并且ON=4,求經(jīng)過M、A、N三點(diǎn)的拋物線所對應(yīng)的函數(shù)關(guān)系式;
          (4)在(3)的條件下,如果拋物線的對稱軸l與線段AN交于點(diǎn)P,點(diǎn)Q是對稱軸上一動點(diǎn),以點(diǎn)P、Q、N為頂點(diǎn)的三角形和以點(diǎn)M、A、N為頂點(diǎn)的三角形相似,求符合條件的點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市滄浪區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

          (2009•滄浪區(qū)一模)如圖1,已知直線EA與x軸、y軸分別交于點(diǎn)E和點(diǎn)A(0,2),過直線EA上的兩點(diǎn)F、G分別作x軸的垂線段,垂足分別為M(m,0)和N(n,0),其中m<0,n>0.
          (1)如果m=-4,n=1,試判斷△AMN的形狀;
          (2)如果mn=-4,(1)中有關(guān)△AMN的形狀的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請說明理由;
          (3)如圖2,題目中的條件不變,如果mn=-4,并且ON=4,求經(jīng)過M、A、N三點(diǎn)的拋物線所對應(yīng)的函數(shù)關(guān)系式;
          (4)在(3)的條件下,如果拋物線的對稱軸l與線段AN交于點(diǎn)P,點(diǎn)Q是對稱軸上一動點(diǎn),以點(diǎn)P、Q、N為頂點(diǎn)的三角形和以點(diǎn)M、A、N為頂點(diǎn)的三角形相似,求符合條件的點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案