日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•滄浪區(qū)一模)如圖1,已知直線EA與x軸、y軸分別交于點(diǎn)E和點(diǎn)A(0,2),過(guò)直線EA上的兩點(diǎn)F、G分別作x軸的垂線段,垂足分別為M(m,0)和N(n,0),其中m<0,n>0.
          (1)如果m=-4,n=1,試判斷△AMN的形狀;
          (2)如果mn=-4,(1)中有關(guān)△AMN的形狀的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由;
          (3)如圖2,題目中的條件不變,如果mn=-4,并且ON=4,求經(jīng)過(guò)M、A、N三點(diǎn)的拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
          (4)在(3)的條件下,如果拋物線的對(duì)稱(chēng)軸l與線段AN交于點(diǎn)P,點(diǎn)Q是對(duì)稱(chēng)軸上一動(dòng)點(diǎn),以點(diǎn)P、Q、N為頂點(diǎn)的三角形和以點(diǎn)M、A、N為頂點(diǎn)的三角形相似,求符合條件的點(diǎn)Q的坐標(biāo).

          【答案】分析:(1)根據(jù)勾股定理可以求出AM.AN,MN的長(zhǎng)度,根據(jù)勾股定理的逆定理就可以求出三角形是直角三角形.
          (2)AM.AN,MN的長(zhǎng)度可以用m,n表示出來(lái),根據(jù)m,n的關(guān)系就可以證明.
          (3)M、A、N的坐標(biāo)已知,根據(jù)待定系數(shù)法局可以求出二次函數(shù)的解析式.
          (4)拋物線的對(duì)稱(chēng)軸與x軸的交點(diǎn)Q1符合條件,易證Rt△PNQ1∽R(shí)t△ANM且Rt△PQ2N、Rt△NQ2Q1、Rt△PNQ1和Rt△ANM兩兩相似,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,得到就可以求出Q1Q2得到符合條件的點(diǎn)的坐標(biāo).
          解答:解:(1)△AMN是直角三角形.
          依題意得OA=2,OM=4,ON=1,
          ∴MN=OM+ON=4+1=5
          在Rt△AOM中,AM===
          在Rt△AON中,AN===
          ∴MN2=AM2+AN2
          ∴△AMN是直角三角形(解法不惟一).(2分)

          (2)答:(1)中的結(jié)論還成立.
          依題意得OA=2,OM=-m,ON=n
          ∴MN=OM+ON=n-m
          ∴MN2=(n-m)2=n2-2mn+m2
          ∵mn=-4
          ∴MN2=n2-2×(-4)+m2=n2+m2+8
          又∵在Rt△AOM中,AM===
          在Rt△AON中,AN===
          ∴AM2+AN2=4+m2+4+n2=n2+m2+8
          ∴MN2=AM2+AN2
          ∴△AMN是直角三角形.(解法不惟一)(2分)

          (3)∵mn=-4,n=4,
          ∴m=-1.
          方法一:設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c.
          ∵拋物線經(jīng)過(guò)點(diǎn)M(-1,0)、N(4,0)和A(0,2)


          ∴所求拋物線的函數(shù)關(guān)系式為y=-x2+x+2.
          方法二:設(shè)拋物線的函數(shù)關(guān)系式為y=a(x+1)(x-4).
          ∵拋物線經(jīng)過(guò)點(diǎn)A(0,2)
          ∴-4a=2解得a=-
          ∴所求拋物線的函數(shù)關(guān)系式為y=-(x+1)(x-4)
          即y=-x2+x+2.(2分)

          (4)拋物線的對(duì)稱(chēng)軸與x軸的交點(diǎn)Q1符合條件,
          ∵l⊥MN,∠ANM=∠PNQ1,
          ∴Rt△PNQ1∽R(shí)t△ANM
          ∵拋物線的對(duì)稱(chēng)軸為直線x=
          ∴Q1,0)(2分)
          ∴NQ1=4-=
          過(guò)點(diǎn)N作NQ2⊥AN,交拋物線的對(duì)稱(chēng)軸于點(diǎn)Q2
          ∴Rt△PQ2N、Rt△NQ2Q1、Rt△PNQ1和Rt△ANM兩兩相似

          即Q1Q2=
          ∵點(diǎn)Q2位于第四象限,
          ∴Q2,-5)(2分)
          因此,符合條件的點(diǎn)有兩個(gè),
          分別是Q1,0),Q2,-5).
          (解法不惟一)
          點(diǎn)評(píng):本題主要考查了勾股定理的逆定理,待定系數(shù)法求函數(shù)的解析式.以及相似三角形的性質(zhì),對(duì)應(yīng)邊的比相等.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:2010年中考復(fù)習(xí)針對(duì)性訓(xùn)練 綜合壓軸題(解析版) 題型:解答題

          (2009•滄浪區(qū)一模)如圖1,已知直線EA與x軸、y軸分別交于點(diǎn)E和點(diǎn)A(0,2),過(guò)直線EA上的兩點(diǎn)F、G分別作x軸的垂線段,垂足分別為M(m,0)和N(n,0),其中m<0,n>0.
          (1)如果m=-4,n=1,試判斷△AMN的形狀;
          (2)如果mn=-4,(1)中有關(guān)△AMN的形狀的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由;
          (3)如圖2,題目中的條件不變,如果mn=-4,并且ON=4,求經(jīng)過(guò)M、A、N三點(diǎn)的拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
          (4)在(3)的條件下,如果拋物線的對(duì)稱(chēng)軸l與線段AN交于點(diǎn)P,點(diǎn)Q是對(duì)稱(chēng)軸上一動(dòng)點(diǎn),以點(diǎn)P、Q、N為頂點(diǎn)的三角形和以點(diǎn)M、A、N為頂點(diǎn)的三角形相似,求符合條件的點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省蘇州市黃橋鎮(zhèn)橫巷模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

          (2009•滄浪區(qū)一模)如圖1,已知直線EA與x軸、y軸分別交于點(diǎn)E和點(diǎn)A(0,2),過(guò)直線EA上的兩點(diǎn)F、G分別作x軸的垂線段,垂足分別為M(m,0)和N(n,0),其中m<0,n>0.
          (1)如果m=-4,n=1,試判斷△AMN的形狀;
          (2)如果mn=-4,(1)中有關(guān)△AMN的形狀的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由;
          (3)如圖2,題目中的條件不變,如果mn=-4,并且ON=4,求經(jīng)過(guò)M、A、N三點(diǎn)的拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
          (4)在(3)的條件下,如果拋物線的對(duì)稱(chēng)軸l與線段AN交于點(diǎn)P,點(diǎn)Q是對(duì)稱(chēng)軸上一動(dòng)點(diǎn),以點(diǎn)P、Q、N為頂點(diǎn)的三角形和以點(diǎn)M、A、N為頂點(diǎn)的三角形相似,求符合條件的點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年陜西省新希望教育中考數(shù)學(xué)最新模擬試卷(二)(解析版) 題型:填空題

          (2009•滄浪區(qū)一模)如圖,數(shù)軸上所表示的不等式組的解集是   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省蘇州市滄浪區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

          (2009•滄浪區(qū)一模)某校初三(1)班畢業(yè)聯(lián)歡會(huì)設(shè)計(jì)了一個(gè)“08好運(yùn)”的游戲:下面是兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),每個(gè)轉(zhuǎn)盤(pán)被分成面積相等的幾個(gè)扇形,游戲者同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),兩個(gè)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),若有一個(gè)轉(zhuǎn)盤(pán)的指針指向0,另一個(gè)轉(zhuǎn)盤(pán)的指針指向8,則游戲者被稱(chēng)為“08好運(yùn)”,求游戲者“08好運(yùn)”的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案