日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知二次函數(shù)yx26mx+9m2+nm,n為常數(shù))

          1)若n=﹣4,這個(gè)函數(shù)圖象與x軸交于AB兩點(diǎn)(點(diǎn)A,B分別在x軸的正、負(fù)半軸),與y軸交于點(diǎn)C,試求△ABC面積的最大值;

          2)若n4m+4,當(dāng)x軸上的動(dòng)點(diǎn)Q到拋物線的頂點(diǎn)P的距離最小值為4時(shí),求點(diǎn)Q的坐標(biāo).

          【答案】1)當(dāng)m0時(shí),△ABC的面積最大為8

          2Q點(diǎn)的坐標(biāo)為(﹣6,0)或(0,0).

          【解析】

          1)把n=﹣4代入得到帶有m的解析式解析式yx26mx+9m24,再用帶有m的值表示出AB、C的坐標(biāo),然后得出三角形面積判斷最大值;

          2)把n4m+4代入原解析式得到y=(x3m2+4m+4,得出頂點(diǎn)P的坐標(biāo),再根據(jù)動(dòng)點(diǎn)Q到拋物線的頂點(diǎn)P的距離最小時(shí)為PQ的橫坐標(biāo)相同,即可得出Q的坐標(biāo).

          解:(1)若n=﹣4,則yx26mx+9m24,

          當(dāng)x0時(shí),y9m24,

          C0,9m24),

          ∵這個(gè)函數(shù)圖象開口向上,與x軸交于A,B兩點(diǎn)(點(diǎn)AB分別在x軸的正、負(fù)半軸),與y軸交于點(diǎn)C

          9m240,

          當(dāng)y0時(shí),x26mx+9m240

          x13m+2,x23m2,

          A3m+2,0),B3m2,0),

          3m+2﹣(3m2)=4

          AB4,

          SABC×4(﹣9m2+4)=﹣2m2+8,

          ∵﹣20,

          ∴當(dāng)m0時(shí),△ABC的面積最大為8

          2)若n4m+4,則yx26mx+9m2+4m+4=(x3m2+4m+4,

          P3m4m+4),

          當(dāng)動(dòng)點(diǎn)Q到拋物線的頂點(diǎn)P的距離最小值為4時(shí),則Q為(3m,0)且4m+4±4,

          解得m=﹣2m0,

          Q點(diǎn)的坐標(biāo)為(﹣6,0)或(0,0).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)點(diǎn)是反比例函數(shù)圖象上的兩個(gè)點(diǎn),當(dāng)時(shí),,則一次函數(shù)的圖象不經(jīng)過的象限是

          A.第一象限 B.第二象限 C.第三象限 D.第四象限

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,將∠MPN繞點(diǎn)PPB處開始順時(shí)針方向旋轉(zhuǎn),PM交邊AB于點(diǎn)EPN交邊AD于點(diǎn)F,當(dāng)PE旋轉(zhuǎn)至PA處時(shí),∠MPN的旋轉(zhuǎn)隨即停止.

          1)如圖2,在旋轉(zhuǎn)中發(fā)現(xiàn)當(dāng)PM經(jīng)過點(diǎn)A時(shí),PN也經(jīng)過點(diǎn)D,求證:△ABP ∽△PCD

          2)如圖3,在旋轉(zhuǎn)過程中,的值是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由

          3)設(shè)AE,連結(jié)EF,則在旋轉(zhuǎn)過程中,當(dāng)為何值時(shí),△BPE與△PEF相似.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商店購進(jìn)一批單價(jià)為16元的日用品,銷售一段時(shí)間后,為了獲取更多利潤, 商店決定提高銷售價(jià)格,經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價(jià)格銷售時(shí),每月能賣360; 若按每件25元的價(jià)格銷售時(shí),每月能賣210.假定每月銷售件數(shù)y()是價(jià)格x( /)的一次函數(shù).

          (1)試求yx之間的函數(shù)關(guān)系式;

          (2)在商品不積壓,且不考慮其他因素的條件下,問銷售價(jià)格為多少時(shí),才能使每月獲得最大利潤?每月的最大利潤是多少?(總利潤=總收入-總成本).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)生上課時(shí)注意力集中的程度可以用注意力指數(shù)表示.某班學(xué)生在一節(jié)數(shù)學(xué)課中的注意力指數(shù)隨上課時(shí)間(分鐘)的變化圖象如圖.上課開始時(shí)注意力指數(shù)為30,第10分鐘時(shí)注意力指數(shù)為80,前10分鐘內(nèi)注意力指數(shù)是時(shí)間的一次函數(shù).10分鐘以后注意力指數(shù)的反比例函數(shù).

          1)求出時(shí)和時(shí),求關(guān)于的函數(shù)關(guān)系式;

          2)如果講解一道較難的數(shù)學(xué)題要求學(xué)生的注意力指數(shù)不小于50,為了保證教學(xué)效果本節(jié)課講完這道題不能超過多少分鐘?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖:在⊙O中,AD平分圓周角∠BAC,AEBC,∠BAC60°,∠OAD16°,求∠C的度數(shù)為( 。

          A.50°B.30°C.44°D.45°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)EAB上一點(diǎn)(不與AB兩點(diǎn)重合),過點(diǎn)OA,E的⊙IADFAB5

          1)求⊙I的直徑的取值范圍;

          2)若⊙I的半徑為2,求AE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】點(diǎn)I為△ABC的內(nèi)心,連AI交△ABC的外接圓于點(diǎn)D,若AI=2CD,點(diǎn)E為弦AC的中點(diǎn),連接EI,IC,若IC=6ID=5,則IE的長為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接ADBD.則下列結(jié)論:

          ①AC=AD;②BD⊥AC;四邊形ACED是菱形.

          其中正確的個(gè)數(shù)是( )

          A0 B1 C2 D3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案