日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          (2004•寧波)已知AB是半圓O的直徑,AB=16,P點是AB上的一動點(不與A、B重合),PQ⊥AB,垂足為P,交半圓O于Q;PB是半圓O1的直徑,⊙O2與半圓O、半圓O1及PQ都相切,切點分別為M、N、C.
          (1)當P點與O點重合時(如圖1),求⊙O2的半徑r;
          (2)當P點在AB上移動時(如圖2),設PQ=x,⊙O2的半徑r.求r與x的函數關系式,并求出r取值范圍.
          【答案】分析:(1)、由勾股定理得OO22-OD2=O2D2=O1O22-O1D2,可求得r的值;
          (2)、連接O1O2、OO2,作O2D⊥AB于D,由射影定理和勾股定理可求得r與x的函數關系式.
          解答:解:(1)連接OO2、O1O2、O2C,作O2D⊥AB于D.(1分)
          ∵⊙O2與⊙O、⊙O1、PQ相切,
          ∴OO2=8-r,(2分)
          O1O2=4+r.(3分)
          ∵四邊形ODO2C是矩形,
          ∴OD=r,O1D=4-r(4分)
          根據勾股定理得:OO22-OD2=O2D2=O1O22-O1D2,
          即:(8-r)2-r2=(r+4)2-(4-r)2,(5分)
          ∴r=2;(6分)

          (2)∵AB是⊙O直徑,PQ⊥AB
          ∴PQ2=AP•PB
          設⊙O1半徑是a,
          則x2=2a(16-2a)=4(8a-a2).
          連接O1O2、OO2,作O2D⊥AB于D
          ∴O1O2=a+r,OO2=8-r,O1D=O1P-PD=a-r,OD=PB-PD-OB=2a-r-8,(8分)
          根據勾股定理得;O1O22-O1D2=OO22-OD2
          即:(a+r)2-(a-r)2=(8-r)2-(2a-r-8)2,(9分)
          化簡得:8r=7a.
          ∴x2=32r,即(10分)
          ∵0≤x≤8,
          ∴0<r≤2.(12分)
          說明:其它解法相應給分
          點評:圓與圓相切,一般通過構造直角三角形,矩形,利用勾股定理和矩形的性質,圓心距與圓的半徑求解.
          練習冊系列答案
          相關習題

          科目:初中數學 來源:2004年全國中考數學試題匯編《不等式與不等式組》(01)(解析版) 題型:選擇題

          (2004•寧波)已知關于x的方程x2-(m-3)x+m2=0有兩個不相等的實數根,那么m的最大整數值是( )
          A.2
          B.1
          C.0
          D.-1

          查看答案和解析>>

          科目:初中數學 來源:2004年全國中考數學試題匯編《二次根式》(02)(解析版) 題型:填空題

          (2004•寧波)已知:a<0,化簡=   

          查看答案和解析>>

          科目:初中數學 來源:2004年全國中考數學試題匯編《分式》(01)(解析版) 題型:選擇題

          (2004•寧波)已a,b為實數,ab=1,M=,N=,則M,N的大小關系是( )
          A.M>N
          B.M=N
          C.M<N
          D.無法確定

          查看答案和解析>>

          科目:初中數學 來源:2004年浙江省寧波市中考數學試卷(解析版) 題型:解答題

          (2004•寧波)已知AB是半圓O的直徑,AB=16,P點是AB上的一動點(不與A、B重合),PQ⊥AB,垂足為P,交半圓O于Q;PB是半圓O1的直徑,⊙O2與半圓O、半圓O1及PQ都相切,切點分別為M、N、C.
          (1)當P點與O點重合時(如圖1),求⊙O2的半徑r;
          (2)當P點在AB上移動時(如圖2),設PQ=x,⊙O2的半徑r.求r與x的函數關系式,并求出r取值范圍.

          查看答案和解析>>

          科目:初中數學 來源:2004年浙江省寧波市中考數學試卷(解析版) 題型:選擇題

          (2004•寧波)已知關于x的方程x2-(m-3)x+m2=0有兩個不相等的實數根,那么m的最大整數值是( )
          A.2
          B.1
          C.0
          D.-1

          查看答案和解析>>

          同步練習冊答案