日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=ax2-3ax+4,
          (1)求拋物線的對稱軸;
          (2)若拋物線與x軸交于A(-1,0)、B兩點,且過第一象限上點D(m,m+1),求sin∠DAB.
          分析:(1)根據(jù)拋物線的對稱軸公式即可解答;
          (2)將A(-1,0)代入y=ax2-3ax+4,求出拋物線解析式,進而求出B點坐標,將點D(m,m+1)代入拋物線解析式,求出m的值,再畫出圖形,根據(jù)三角函數(shù)的定義即可求出sin∠DAB的值.
          解答:精英家教網(wǎng)解:(1)拋物線的對稱軸為x=-
          -3a
          2a
          =
          3
          2
          ;

          (2)將A(-1,0)代入y=ax2-3ax+4得,
          a+3a+4=0,
          解得a=-1,
          解析式為y=-x2+3x+4.
          當y=0時,原式可化為x2-3x-4=0,
          解得x1=-1,x2=4.
          則B點坐標為(4,0).
          將點D(m,m+1)代入y=-x2+3x+4得,
          -m2+3m+4=m+1,
          整理得,m2-2m-3=0,
          解得m1=-1,m2=3.
          則D點坐標為(-1,0)或(3,4).
          ∵D(-1,0)與A點重合,故舍去.
          則D(3,4).
          如圖:因為D點坐標為(3,4),
          所以OD=3,則AR=OA+OR=1+3=4,DR=4,
          AD=
          32+32
          =3
          2

          sin∠DAB=sin∠DAR=
          4
          3
          2
          =
          2
          2
          3
          點評:此題考查了拋物線與x軸的交點與銳角三角函數(shù)的定義,求出拋物線解析式并畫出草圖是解題的關鍵.
          而勾股定理也是重要解題工具.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
          (1)求拋物線的解析式;
          (2)用配方法求拋物線的頂點D的坐標和對稱軸;
          (3)求四邊形ABDE的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
           
          ,k=
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有(  )

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
          2
          ,b+ac=3.
          (1)求b的值;
          (2)求拋物線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
          (1)使用a、c表示b;
          (2)判斷點B所在象限,并說明理由;
          (3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
          ca
          ,b+8
          ),求當x≥1時y1的取值范圍.

          查看答案和解析>>

          同步練習冊答案