日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知ADBC,∠A=∠C50°,線段AD上從左到右依次有兩點(diǎn)EF(不與A、D重合)

          1ABCD是什么位置關(guān)系,并說(shuō)明理由;

          2)觀察比較∠1、∠2、∠3的大小,并說(shuō)明你的結(jié)論的正確性;

          3)若∠FBD:∠CBD14,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度數(shù),判斷BEAD是何種位置關(guān)系?

          【答案】(1)詳見(jiàn)解析;(2)∠1>∠2>∠3,理由詳見(jiàn)解析;(3)詳見(jiàn)解析

          【解析】

          1)根據(jù)ADBC,可得∠A+ABC180°,∠ABC130°, 則有∠C+ABC180°,可知ABCD;
          2)根據(jù)ADBC,得到∠1=∠EBC,∠2=∠FBC,∠3=∠DBC,根據(jù)∠EBC>∠FBC>∠DBC,可得∠1>∠2>∠3;
          3)根據(jù)ADBC,ABCD,∠1=∠EBC, BDC=∠ABD,根據(jù)∠1=∠BDC,可得∠ABE=∠DBC, 設(shè)∠FBDx°,則∠DBC4x°,有∠ABE=∠EBF4x°,可列出4x+4x+x+4x130°,解得x10°,∠190°,并可知BEAD

          解:(1ABCD,

          ADBC,

          ∴∠A+∠ABC180°,

          ∵∠A50°,

          ∴∠ABC130°

          ∵∠C50°,

          ∴∠C+∠ABC180°,

          ABCD;

          2∠1∠2∠3,

          ADBC,

          ∴∠1EBC∠2FBC,∠3DBC

          ∵∠EBCFBCDBC,

          ∴∠1>∠2>∠3

          3ADBC,

          ∴∠1EBC,

          ABCD

          ∴∠BDCABD,

          ∵∠1BDC,

          ∴∠ABD=∠EBC

          ∴∠ABE=∠DBC,

          BE平分ABF

          設(shè)FBDx°,則DBC4x°

          ∴∠ABEEBF4x°,

          4x+4x+x+4x130°,

          x10°,

          ∴∠14x+x+4x90°

          BEAD

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位, 的三個(gè)頂點(diǎn)都在格點(diǎn)上.

          1)在網(wǎng)格中畫(huà)出向下平移3個(gè)單位得到的

          2)在網(wǎng)格中畫(huà)出關(guān)于直線對(duì)稱的;

          3)在直線上畫(huà)一點(diǎn),使得的值最大.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABE中,∠A105°,AE的垂直平分線MNBE于點(diǎn)C,且ABBCBE,求∠B的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知過(guò)點(diǎn)B(1,0)的直線l1y=kx+b與直線l2y=2x+4相交于點(diǎn)P(a,2)

          (1) 求直線l1的解析式;

          (2) 根據(jù)圖象直接寫(xiě)出不等式的解集;

          (3) 求四邊形PAOC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校舉辦“迎亞運(yùn)”學(xué)生書(shū)畫(huà)展覽,現(xiàn)要在長(zhǎng)方形展廳中劃出3個(gè)形狀、大小完全一樣的小長(zhǎng)方方形“圖中陰影部分”區(qū)域擺放作品.

          1)如圖1,若大長(zhǎng)方形的長(zhǎng)和寬分別為45米和30米,求小長(zhǎng)方形的長(zhǎng)和寬;

          2)如圖2,若大長(zhǎng)方形的長(zhǎng)和寬分別為

          ①直接寫(xiě)出1個(gè)小長(zhǎng)方形周長(zhǎng)與大長(zhǎng)方形周長(zhǎng)之比;

          ②若作品展覽區(qū)域(陰影部分)面積占展廳面積的,試求的值,

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC 中,點(diǎn) D、E 分別在 BCAC 上且 BD=CE,AD=DE C =ADE, 則∠B =C,試填寫(xiě)說(shuō)理過(guò)程.

          解因?yàn)椤?/span>EDB =C+DEC

          即∠ADB+ADE =C+DEC

          因?yàn)椤?/span>C =ADE

          所以∠ = (等式性質(zhì))

          ABD DCE 中,

          所以ABD DCE

          所以∠B =C

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),A(﹣22),過(guò)AABy軸于點(diǎn)B,以OB為邊在第一象限內(nèi)作△BCO

          1)如圖,若△BCO為等邊三角形,求點(diǎn)C坐標(biāo);

          2)如圖,若△BCO為以BO為斜邊的直角三角形,求AC的最大值;

          3)如圖,若∠BCO45°,BCa,COb,請(qǐng)用ab的代數(shù)式表示AC的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知ABC中,∠ABC=90°AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1l2,l3上,且l1,l2之間的距離為1,l2,l3之間的距離為2,則AC=____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

          A.BD=DCAB=AC B.ADB=ADC,BD=DC

          C.B=C,BAD=CAD D. B=CBD=DC

          查看答案和解析>>

          同步練習(xí)冊(cè)答案