日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
          (1)當(dāng)m取何整數(shù)值時(shí),關(guān)于x的方程mx2-3(m-1)x+2m-3=0的根都是整數(shù);
          (2)若拋物線y=mx2-3(m-1)x+2m-3向左平移一個(gè)單位后,過反比例函數(shù)y=(k≠0)上的一點(diǎn)(-1,3),
          ①求拋物線y=mx2-3(m-1)x+2m-3的解析式;
          ②利用函數(shù)圖象求不等式-kx>0的解集.

          【答案】分析:(1)原方程可能是一元一次方程也可能是一元二次方程,因此分m=0和m≠0兩種情況,先求出兩種情況下方程的根,再由根是整數(shù)確m定的值.
          (2)①先表示出平移后的拋物線解析式,然后將點(diǎn)(-1,3)代入其中求解即可;
          ②根據(jù)反比例函數(shù)過(-1,3)確定k的值,然后分別作出y=和y=kx的函數(shù)圖象,找出前者的圖象在后者上方的部分即可.
          解答:解:(1)當(dāng)m=0時(shí),x=1;
          當(dāng)m≠0,可解得x1=1,x2==2-
          ∴m=±1、±3時(shí),x均有整數(shù)根;
          綜上可得m=0、±1、±3時(shí),x均有整數(shù)根.

          (2)①拋物線向左平移一個(gè)單位后得到y(tǒng)=m(x+1)2-3(m-1)(x+1)+2m-3,過點(diǎn)(-1,3),代入解得:m=3;
          ∴拋物線解析式為y=3x2-6x+3.
          ②∵反比例函數(shù)y=(k≠0)經(jīng)過點(diǎn)(-1,3),
          ∴k=-1×3=-3;
          作出y=kx、y=(k≠0)的圖象(如右圖)
          由圖可知:當(dāng)x>1或-1<x<0時(shí),>kx;
          即:不等式-kx>0的解集為:x>1或-1<x<0.
          點(diǎn)評(píng):該題涉及到:方程與函數(shù)的聯(lián)系、函數(shù)解析式的確定以及利用圖象法解不等式的方法等知識(shí).考查的內(nèi)容較為基礎(chǔ),難度不大.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
          (1)求證:m取任何實(shí)數(shù)量,方程總有實(shí)數(shù)根;
          (2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱;
          ①求二次函數(shù)y1的解析式;
          ②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
          (3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          17、已知:關(guān)于x的方程x2+2x=3-4k有兩個(gè)不相等的實(shí)數(shù)根(其中k為實(shí)數(shù))
          (1)則k的取值范圍是
          k<1
          ;
          (2)若k為非負(fù)整數(shù),則此時(shí)方程的根是
          -3或1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          3、已知:關(guān)于x的方程x2-kx-2=0.
          (1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
          (2)設(shè)方程的兩根為x1,x2,如果2(x1+x2)>x1x2,求k的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:關(guān)于x的方程ax2-(1-3a)x+2a-1=0,求證:a取任何實(shí)數(shù)時(shí),方程ax2-(1-3a)x+2a-1=0總有實(shí)數(shù)根.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:關(guān)于x的方程x2+kx-12=0,求證:方程有兩個(gè)不相等的實(shí)數(shù)根.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案