【題目】如圖,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.
(1)求出二次函數(shù)表達(dá)式;
(2)若點(diǎn)N在線段BC上運(yùn)動(不與點(diǎn)B、C重合),過點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時,求此時點(diǎn)N的坐標(biāo);
(3)若點(diǎn)N在x軸上運(yùn)動,當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時,請求出此時點(diǎn)N的坐標(biāo).
【答案】(1) y=﹣x2+
x+4;(2) (3,0);(3)N(﹣8,0)、(8﹣4
,0)、(3,0)、(8+4
,0).
【解析】
(1)根據(jù)待定系數(shù)法即可求得;
(2)設(shè)點(diǎn)N的坐標(biāo)為(n,0),則BN=n+2,過M點(diǎn)作MD⊥x軸于點(diǎn)D,根據(jù)三角形相似對應(yīng)邊成比例求得MD=(n+2),構(gòu)建二次函數(shù),根據(jù)函數(shù)解析式求得即可;
(3)分別以A、C兩點(diǎn)為圓心,AC長為半徑畫弧,與x軸交于三個點(diǎn),由AC的垂直平分線與x軸交于一個點(diǎn),即可求得點(diǎn)N的坐標(biāo).
解:(1)∵二次函數(shù)y=ax2+x+c的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),
∴ ,
解得 .
∴拋物線表達(dá)式: ;
(2)令y=0,則 ,
解得x1=8,x2=﹣2,
∴點(diǎn)B的坐標(biāo)為(﹣2,0).
又∵A(0,4),C(8,0),
∴,
∴AB2+AC2=BC2,
∴∠BAC=90°.
∴AC⊥AB.
∵AC∥MN,
∴MN⊥AB.
設(shè)點(diǎn)N的坐標(biāo)為(n,0),則BN=n+2,
∵MN∥AC,
△BMN∽△BAC
∴,
∴,
,
,
∵S△AMN=AMMN
=
=,
當(dāng)n=3時,△AMN面積最大是5,
∴N點(diǎn)坐標(biāo)為(3,0).
∴當(dāng)△AMN面積最大時,N點(diǎn)坐標(biāo)為(3,0).
(3)由(2)知,AC= ,
①以A為圓心,以AC長為半徑作圓,交x軸于N,此時N的坐標(biāo)為(﹣8,0),
②以C為圓心,以AC長為半徑作圓,交x軸于N,此時N的坐標(biāo)為(,0)或(
,0)
③作AC的垂直平分線交AC于P,交x軸于N,
∴△AOC∽△NPC.
∴即
.
∴CN=5.
∴此時N的坐標(biāo)為(3,0),
綜上,若點(diǎn)N在x軸上運(yùn)動,當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時,點(diǎn)N的坐標(biāo)分別為(﹣8,0)、(,0)、(3,0)、(
,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的周長是20,且
,
是
邊上的中點(diǎn),點(diǎn)
是
邊上的一個動點(diǎn),將
沿
折疊得到
,連接
,
,當(dāng)
是直角三角形時,
的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=-x2+(m-1) x+m (m為常數(shù)),其頂點(diǎn)為M.
(1)請判斷該函數(shù)的圖像與x軸公共點(diǎn)的個數(shù),并說明理由;
(2)當(dāng)-2≤m≤3時,求該函數(shù)的圖像的頂點(diǎn)M縱坐標(biāo)的取值范圍;
(3)在同一坐標(biāo)系內(nèi)兩點(diǎn)A(-1,-1)、B(1,0),△ABM的面積為S,當(dāng)m為何值時,S的面積最。坎⑶蟪鲞@個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長線上的動點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由△DAM平移得到.若過點(diǎn)E作EH⊥AC,H為垂足,則有以下結(jié)論:①點(diǎn)M位置變化,使得∠DHC=60°時,2BE=DM;②無論點(diǎn)M運(yùn)動到何處,都有DM=HM;③無論點(diǎn)M運(yùn)動到何處,∠CHM一定大于135°.其中正確結(jié)論的序號為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】碑林書法社小組用的書法練習(xí)紙(毛邊紙可以到甲商店購買,也可以到乙商店購買已知兩商店的標(biāo)價都是每刀20元(每刀100張),但甲商店的優(yōu)惠條件是:若購買不超過10刀,則按標(biāo)價買,購買10以上,從第11刀開始按標(biāo)價的七折賣;乙商店的優(yōu)惠條件是:購買一只9元的毛筆,從第一刀開始按標(biāo)價的八五折賣.購買刀數(shù)為(刀),在甲商店購買所需費(fèi)用為
元,在乙商店購買所需費(fèi)用為
元.
(1)寫出、
與
之間的函數(shù)關(guān)系式.
(2)求在乙商店購買所需總費(fèi)用小于甲商店購買所需總費(fèi)用時的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線M:y=- x2+2向左平移2個單位,再向上平移1個單位,得到拋物線M'.若拋物線M'與x軸交于A、B兩點(diǎn),M'的頂點(diǎn)記為C,則∠ACB=( )
A.45°B.60°C.90°D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線經(jīng)過點(diǎn)A(3,0)和點(diǎn)B(0,2).
(1)求直線的解析式;
(2)直線與函數(shù)
的圖象交于點(diǎn)C(C在第二象限),若ΔCOB的面積與ΔAOB的面積相等,求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】內(nèi)接于
,
,連接
;
(1)如圖1,連接并延長交
于點(diǎn)
,連接
,求證:
;
(2)如圖2,延長交
于點(diǎn)H,點(diǎn)F為BH上一點(diǎn),連接AF,若
,求證:
;
(3)在(2)的條件下,如圖3,點(diǎn)E為AB上一點(diǎn),點(diǎn)D為上一點(diǎn),連接
、
,若
,若
,
,
,連接
,求線段
的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com