【題目】四邊形是平行四邊形,點
在
邊上運動(點
不與點
,
重合)
(1)如圖1,當(dāng)點運動到
邊的中點時,連接
,若
平分
,證明:
;
(2)如圖2,過點作
且交
的延長線于點
,連接
.若
,
,
,在線段
上是否存在一點
,使得四邊形
是菱形?若存在,請說明當(dāng)發(fā)
,點
分別在線段
,
上什么位置時四邊形
是菱形,并證明;若不存在,請說明理由.
【答案】(1)見解析;(2)存在,當(dāng)且
時,四邊形
是菱形,見解析.
【解析】
(1)由平行四邊形的性質(zhì)和角平分線定義得出∠AEB=∠ABE,證出AB=AE.即可得出結(jié)論;
(2)過點A作AH⊥DF于H,由直角三角形的性質(zhì)得出DH=AD=1,由勾股定理得出AH=
.在Rt△DEF中,∠EFD=30°,得出DF=2DE=1+
,因此FH=DF-DH=
,得出FH=AB.證出四邊形ABFH是平行四邊形.由AH=AB,即可得出結(jié)論.
(1)如圖(1),平行四邊形中,
∵,
∴.
∵平分
,
∴,
∴
∴.
又∵,
∴.
(2)存在.當(dāng)且
時,四邊形
是菱形.理由如下:
如圖,過點作
于
,
在平行四邊形中,
,
,
在中,
,
∴
∴,
.
∴在中,
,
∴,
∴,
∴.
又∵在平行四邊形中,
,點
在
的延長線上,
∴,
∴四邊形是平行四邊形.
∵,
∴四邊形是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海珠區(qū)某學(xué)校為進(jìn)一步加強和改進(jìn)學(xué)校體育工作,切實提高學(xué)生體質(zhì)健康水平,決定推進(jìn)“一人一球”活動計劃. 學(xué)生可根據(jù)自己的喜好選修一門球類項目(A :足球,B:籃球,C:排球,D:羽毛球,E:乒乓球),陳老師對某班全班同學(xué)的
選課情況進(jìn)行統(tǒng)計后,制成了兩幅不完整的統(tǒng)計圖 (如圖).
(1) 求出該班的總?cè)藬?shù),并將條形統(tǒng)計圖補充完整;
(2) 若該校共有學(xué)生 2500 名,請估計約有多少人選修足球?
(3) 該班班委 4 人中,1 人選修足球,1 人選修籃球,2 人選修羽毛球,陳老師要從這
4 人中任選 2 人了解他們對體育選修課的看法,請你用列表或畫樹狀圖的方法,求 選出的 2 人中至少有 1 人選修羽毛球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,P是BD上一點,AP的延長線交CD于點Q,交BC的延長線于點G,點M是GQ的中點,連接CM.求證:PC⊥MC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線AB、CD交于點O,,
是方程
的解,也是方程
的解,且
,
.
(1)求的度數(shù).
(2)若射線OM從OC出發(fā),繞點O以的速度順時針轉(zhuǎn)動,射線ON從OD出發(fā),繞點O以
的速度逆時針第一次轉(zhuǎn)動到射線OE停止,當(dāng)ON停止時,OM也隨之停止.在轉(zhuǎn)動過程中,設(shè)運動時間為t,當(dāng)t為何值時,
?
(3)在(2)的條件下,當(dāng)ON運動到內(nèi)部時,下列結(jié)論:①
不變;②
不變,其中只有一個是正確的,請選擇并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某中學(xué)2018年田徑運動會上,參加跳高的運動員的成績?nèi)绫砣荆?/span>
成績/m | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 |
人數(shù) | 2 | 3 | 2 | 3 | 4 | 1 |
(1)寫出這些運動員跳高成績的眾數(shù);
(2)該按2017年田徑運動會上跳高的平均成績?yōu)?/span>1.63m,則該校2018年田徑運動會上跳高的平均成績與2017年相比,是否有提高?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知О是直線AB上的一點,,OE平分
.
(1)在圖(a)中,若,求
的度數(shù);
(2)在圖(a)中,若,直接寫出
的度數(shù)(用含
的代數(shù)式表示)
(3)將圖(a)中的繞頂點O順時針旋轉(zhuǎn)至圖(b)的位置.
①探究和
的度數(shù)之間的關(guān)系,直接寫出結(jié)論;
②在的內(nèi)部有一條射線OF,滿足:
,試確定
與
的度數(shù)之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解2012年全國中學(xué)生創(chuàng)新能力大賽中競賽項目“知識產(chǎn)權(quán)”筆試情況,隨機抽查了部分參數(shù)同學(xué)的成績,整理并制作如下統(tǒng)計圖:
請根據(jù)以上圖表提供的信息,解答下列問題:
(1)本次調(diào)查的樣本容量為 ;
(2)補全頻數(shù)分布直方圖;
(3)在扇形統(tǒng)計圖中,m= ,分?jǐn)?shù)段60≤x<70的圓心角= °;
(4)參加比賽的小聰說,他的比賽成績是所有抽查同學(xué)成績的中位數(shù),據(jù)此推斷他的成績落在 分?jǐn)?shù)段內(nèi);
(5)如果比賽成績80分以上(含80分)為優(yōu)秀,那么你估計該競賽項目的優(yōu)秀率大約是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點B落在點B'處,則重疊部分的面積為()
A.12B.10C.8D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com