日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知直線y=
          1
          2
          x與雙曲線y=
          k
          x
          (k>0)
          交于A,B兩點,且點A的橫坐標為4.
          (1)求k的值;
          (2)若雙曲線y=
          k
          x
          (k>0)
          上一點C的縱坐標為8,求△AOC的面積;
          (3)過原點O的另一條直線l交雙曲線y=
          k
          x
          (k>0)
          于P,Q兩點(P點在第一象限),若由點A,B,P,Q為頂點組成的四邊形面積為24,求點P的坐標.
          分析:(1)先根據(jù)直線的解析式求出A點的坐標,然后將A點坐標代入雙曲線的解析式中即可求出k的值;
          (2)由(1)得出的雙曲線的解析式,可求出C點的坐標,由于△AOC的面積無法直接求出,因此可通過作輔助線,通過其他圖形面積的和差關系來求得.(解法不唯一);
          (3)由于雙曲線是關于原點的中心對稱圖形,因此以A、B、P、Q為頂點的四邊形應該是平行四邊形,那么△POA的面積就應該是四邊形面積的四分之一即6.可根據(jù)雙曲線的解析式設出P點的坐標,然后參照(2)的三角形面積的求法表示出△POA的面積,由于△POA的面積為6,由此可得出關于P點橫坐標的方程,即可求出P點的坐標.
          解答:解:(1)∵點A橫坐標為4,
          把x=4代入y=
          1
          2
          x中
          得y=2,
          ∴A(4,2),
          ∵點A是直線y=
          1
          2
          x與雙曲線y=
          k
          x
          (k>0)的交點,
          ∴k=4×2=8;

          精英家教網(wǎng)(2)解法一:如圖,
          ∵點C在雙曲線上,
          當y=8時,x=1,
          ∴點C的坐標為(1,8).
          過點A、C分別做x軸、y軸的垂線,垂足為M、N,得矩形DMON.
          ∵S矩形ONDM=32,S△ONC=4,S△CDA=9,S△OAM=4.
          ∴S△AOC=S矩形ONDM-S△ONC-S△CDA-S△OAM=32-4-9-4=15;

          精英家教網(wǎng)解法二:如圖,
          過點C、A分別做x軸的垂線,垂足為E、F,
          ∵點C在雙曲線y=
          8
          x
          上,
          當y=8時,x=1,
          ∴點C的坐標為(1,8).
          ∵點C、A都在雙曲線y=
          8
          x
          上,
          ∴S△COE=S△AOF=4,
          ∴S△COE+S梯形CEFA=S△COA+S△AOF
          ∴S△COA=S梯形CEFA
          ∵S梯形CEFA=
          1
          2
          ×(2+8)×3=15,
          ∴S△COA=15;

          精英家教網(wǎng)(3)∵反比例函數(shù)圖象是關于原點O的中心對稱圖形,
          ∴OP=OQ,OA=OB,
          ∴四邊形APBQ是平行四邊形,
          ∴S△POA=S平行四邊形APBQ×
          1
          4
          =
          1
          4
          ×24=6,
          設點P的橫坐標為m(m>0且m≠4),
          得P(m,
          8
          m
          ),
          過點P、A分別做x軸的垂線,垂足為E、F,
          ∵點P、A在雙曲線上,
          ∴S△POE=S△AOF=4,
          若0<m<4,如圖,
          ∵S△POE+S梯形PEFA=S△POA+S△AOF,
          ∴S梯形PEFA=S△POA=6.
          1
          2
          (2+
          8
          m
          )•(4-m)=6.
          ∴m1=2,m2=-8(舍去),
          ∴P(2,4);

          精英家教網(wǎng)若m>4,如圖,
          ∵S△AOF+S梯形AFEP=S△AOP+S△POE
          ∴S梯形PEFA=S△POA=6.
          1
          2
          (2+
          8
          m
          )•(m-4)=6,
          解得m1=8,m2=-2(舍去),
          ∴P(8,1).
          ∴點P的坐標是P(2,4)或P(8,1).
          點評:本題考查反比例解析式的確定和性質(zhì)、圖形的面積求法、函數(shù)圖象交點等知識及綜合應用知識、解決問題的能力.難點是不規(guī)則圖形的面積通常轉化為規(guī)則圖形的面積的和差來求解.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          16、如圖,已知直線AB和CD相交于點O,∠COE是直角,OF平分∠AOE.
          (1)寫出∠AOC與∠BOD的大小關系:
          相等
          ,判斷的依據(jù)是
          等角的補角相等
          ;
          (2)若∠COF=35°,求∠BOD的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知直線l1y=
          2
          3
          x+
          8
          3
          與直線 l2:y=-2x+16相交于點C,直線l1、l2分別交x軸于A、B兩點,矩形DEFG的頂點D、E分別在l1、l2上,頂點F、G都在x軸上,且點G與B點重合,那么S矩形DEFG:S△ABC=
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
          35°
          35°

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知直線m∥n,則下列結論成立的是(  )

          查看答案和解析>>

          同步練習冊答案