日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中xOy中,一次函數(shù)y=
          54
          x+m
          (m為常數(shù))的圖象與x軸交于點(diǎn)A(-3,0),與y軸交于點(diǎn)C.以直線x=1為對(duì)稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),a≠0)經(jīng)過(guò)A、C兩點(diǎn),并與x軸的正半軸交于點(diǎn)B.
          (1)求點(diǎn)C的坐標(biāo);
          (2)求拋物線的函數(shù)表達(dá)式;
          (3)設(shè)E是y軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)E作直線AC的平行線交x軸于點(diǎn)F,是否存在這樣的點(diǎn)E,使得A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
          分析:(1)首先求得m的值和直線的解析式,進(jìn)而得出C點(diǎn)坐標(biāo);
          (2)根據(jù)拋物線對(duì)稱性得到B點(diǎn)坐標(biāo),根據(jù)A、B點(diǎn)坐標(biāo)利用交點(diǎn)式求得拋物線的解析式;
          (3)存在點(diǎn)E使得以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形.如答圖1所示,過(guò)點(diǎn)E作EG⊥x軸于點(diǎn)G,構(gòu)造全等三角形,利用全等三角形和平行四邊形的性質(zhì)求得E點(diǎn)坐標(biāo)和平行四邊形的面積.注意:符合要求的E點(diǎn)有兩個(gè),如答圖1所示,不要漏解.
          解答:解:(1)∵y=
          5
          4
          x+m經(jīng)過(guò)點(diǎn)(-3,0),
          ∴0=-
          15
          4
          +m,
          解得:m=
          15
          4
          ,
          ∴直線解析式為:y=
          5
          4
          x+
          15
          4

          C(0,
          15
          4
          );

          (2)∵拋物線y=ax2+bx+c對(duì)稱軸為x=1,且與x軸交于A(-3,0),
          ∴另一交點(diǎn)為B(5,0),
          設(shè)拋物線解析式為y=a(x+3)(x-5),
          ∵拋物線經(jīng)過(guò)C(0,
          15
          4
          ),
          15
          4
          =a•3(-5),
          解得a=-
          1
          4

          ∴拋物線解析式為y=-
          1
          4
          x2+
          1
          2
          x+
          15
          4
          ;

          (2)假設(shè)存在點(diǎn)E使得以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形,
          則AC∥EF且AC=EF.如答圖1,

          (i)當(dāng)點(diǎn)E在點(diǎn)E位置時(shí),過(guò)點(diǎn)E作EG⊥x軸于點(diǎn)G,
          ∵AC∥EF,∴∠CAO=∠EFG,
          在△CAO和△EFG中
          ∠COA=∠EGF
          ∠GFE=∠CAO
          AC=EF
          ,
          ∴△CAO≌△EFG(AAS),
          ∴EG=CO=
          15
          4
          ,
          即yE=
          15
          4

          15
          4
          =-
          1
          4
          xE2+
          1
          2
          xE+
          15
          4
          ,
          解得xE=2(xE=0與C點(diǎn)重合,舍去),
          ∴E(2,
          15
          4
          ),
          S?ACEF=
          15
          2
          ;
          (ii)當(dāng)點(diǎn)E在點(diǎn)E′位置時(shí),過(guò)點(diǎn)E′作E′G′⊥x軸于點(diǎn)G′,
          -
          15
          4
          =-
          1
          4
          x2+
          1
          2
          x+
          15
          4
          ,
          解得:x=1±
          31
          ,(負(fù)數(shù)舍去),則x=1+
          31
          ,
          可得E′(
          31
          +1,-
          15
          4
          ),
          S?ACE′F′=
          15
          31
          +105
          4
          點(diǎn)評(píng):本題考查了二次函數(shù)的相關(guān)性質(zhì)、一次函數(shù)的相關(guān)性質(zhì)、一元二次方程根與系數(shù)的關(guān)系以及二次根式的運(yùn)算、平行四邊形、全等三角形等.本題解題技巧要求高,而且運(yùn)算復(fù)雜,因此對(duì)考生的綜合能力提出了很高的要求.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
          (1)求點(diǎn)B的坐標(biāo);
          (2)當(dāng)∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
          (3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案