日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,∠ACB=105°,AC邊上的垂直平分線交AB邊于點(diǎn)D,交AC邊于點(diǎn)E,連結(jié)CD

          1)若AB=10,BC=6,求△BCD的周長;

          2)若AD=BC,試求∠A的度數(shù).

          【答案】116;(225°

          【解析】

          根據(jù)線段垂直平分線的性質(zhì),可得CD=AD,根據(jù)三角形的周長公式,可得答案;根據(jù)線段垂直平分線的性質(zhì),可得CD=AD,根據(jù)等腰三角形的性質(zhì),可得∠B∠CDB的關(guān)系,根據(jù)三角形外角的性質(zhì),可得∠CDB∠A的關(guān)系,根據(jù)三角形內(nèi)角和定理,可得答案.

          解:(1∵DEAC的垂直平分線,

          ∴AD=CD

          ∵CBCD=BC+BD+CD=BC+BD+AD=BC+AB

          ∵AB=10,BC=6,

          ∴CBCD=16

          2∵AD=CD

          ∴∠A=∠ACD,

          設(shè)∠A=x

          ∵AD=CB,

          ∴CD=CB

          ∴∠CDB=∠CBD

          ∵∠CDB△ACD的外角,

          ∴∠CDB=∠A+∠ACD=2x

          ∵∠A、∠B∠ACB是三角形的內(nèi)角,

          ∵∠A+∠B+∠ACB=180°,

          ∴x+2x+105°=180°,

          解得x=25°

          ∴∠A=25°

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖,AD是△ABC的角平分線,DEDF分別是△ABD和△ACD的高。求證:AD垂直平分EF

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,O、D分別為AB、AC上的點(diǎn),經(jīng)過A、D兩點(diǎn)的⊙O分別交于AB、AC于點(diǎn)E、F,且BC與⊙O相切于點(diǎn)D.

          (1)求證:;

          (2)當(dāng)AC=2,CD=1時,求⊙O的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(2013年四川自貢12分)將兩塊全等的三角板如圖擺放,其中A1CB1=ACB=90°,A1=A=30°.

          (1)將圖中的A1B1C順時針旋轉(zhuǎn)45°得圖,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;

          (2)在圖中,若AP1=2,則CQ等于多少?

          (3)如圖,在B1C上取一點(diǎn)E,連接BE、P1E,設(shè)BC=1,當(dāng)BEP1B時,求P1BE面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線與坐標(biāo)軸分別交于A,B,C三點(diǎn),在拋物線上找到一點(diǎn)D,使得∠DCB=ACO,則D點(diǎn)坐標(biāo)為____________________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,∠C=90°,B=30°,以A為圓心,任意長為半徑畫弧交ABM、ACN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BCD,下列四個結(jié)論:

          AD是∠BAC的平分線;

          ②∠ADC=60°;

          ③點(diǎn)DAB的中垂線上;

          SACDSACB=1:3.

          其中正確的有( 。

          A. 只有①②③ B. 只有①②④ C. 只有①③④ D. ①②③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進(jìn)價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:

          銷售時段

          銷售數(shù)量

          銷售收入

          A種型號

          B種型號

          第一周

          3

          5

          18000

          第二周

          4

          10

          31000

          1)分別求A、B兩種型號的凈水器的銷售單價;

          2)若該電器公司準(zhǔn)備用不多于54000元的金額采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在等邊三角形ABC的三邊上,分別取點(diǎn)D、E、F,使AD=BE=CF,

          1)求證:△DEF是等邊三角形.

          2)若2BE=EC,求∠FEC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某研究性學(xué)習(xí)小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點(diǎn)繞矩形ABCD(AB<BC)的對角線的交點(diǎn)O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點(diǎn)。

          該學(xué)習(xí)小組成員意外的發(fā)現(xiàn)圖(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖和圖中發(fā)現(xiàn)的結(jié)論選擇其一說明理由。

          試探究圖中BN、CN、CM、DN這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由。

          將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點(diǎn)繞O點(diǎn)旋轉(zhuǎn)到圖,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數(shù)量關(guān)系(不需要證明)

          查看答案和解析>>

          同步練習(xí)冊答案