日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF

          1)求證△BED≌△CFD.

          2)已知EC=6,AC=10,求BE.

          3)當(dāng)∠C=45°時(shí),判斷△DFC的周長(zhǎng)與線段AC長(zhǎng)度的關(guān)系,并說(shuō)明理由.

          【答案】1)見(jiàn)解析;(22;(3△DFC的周長(zhǎng)等于AC的長(zhǎng)度,理由見(jiàn)解析.

          【解析】

          (1)由已知條件根據(jù)“HL”即可證得△BED≌△CFD;

          (2)由已知易得AE=8,由(1)中所得△BED≌△CFD可得DE=DF,結(jié)合AD=AD,∠AED=∠AFD=90°可得△AED≌△AFD,由此可得AE=AF=AC-CF,再結(jié)合BE=CF即可得到AE=AC-BE,從而可得BE=AC-AE=10-8=2;

          (3)當(dāng)∠C=45°時(shí),易得△AEC是等腰直角三角形,結(jié)合(2)中所得AE=AF可得CE=AE=AF,結(jié)合DF=DE即可得到△DCF的周長(zhǎng)=DC+DF+FC=DC+DE+FC=CE+FC=AF+FC=AC.

          (1)∵DE⊥AB,DF⊥AC,

          ∴∠E=∠DFC=90°.

          Rt△BEDRt△CFD中,BE=CF,BD=CD,

          ∴Rt△BED≌ Rt△CFD(HL);

          (2)∵DE⊥AE,EC=6,AC=10,

          ∴在RtAEC中,AE=,

          由(1)中所得Rt△BED≌ Rt△CFD可得DE=DF,

          ∵在△AED△AFD中,DE=DF,AD=AD,∠E=∠AFD=90°,

          ∴Rt△AED≌Rt△AFD(HL),

          ∴AE=AF ,

          ∵AF=AC-CF,

          ∴AE=AC-CF ,

          ∵BE=CF ,

          ∴AE=AC-B E ,即8=10-BE ,

          ∴BE=2 ;

          (3)△DFC的周長(zhǎng)等于AC的長(zhǎng)度,理由如下

          ∵∠C=45°,∠E=90°,

          ∴△AEC為等腰直角三角形,

          AE=EC,

          由(2)可知AE=AF,

          ∴AF=EC,

          ∵DE=DF,

          ∴△DFC的周長(zhǎng)=CD+DF+FC=CD+DE+FC=CE+FC=AF+FC=AC.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個(gè)條件才能使ABC≌△DEC,不能添加的一組條件是

          A.BC=EC,B=E B.BC=EC,AC=DC

          C.BC=DC,A=D D.B=E,A=D

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四邊形ABCDABBC1,CD,DA1且∠B90°.求:

          (1)BAD的度數(shù);

          (2)四邊形ABCD的面積(結(jié)果保留根號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知,射線分別和直線交于點(diǎn),射線分別和直線交于點(diǎn),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)與三點(diǎn)不重合),設(shè),,

          (1)如果點(diǎn)兩點(diǎn)之間運(yùn)動(dòng)時(shí),之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

          (2)如果點(diǎn)兩點(diǎn)之外運(yùn)動(dòng)時(shí),之間有何數(shù)量關(guān)系?(只需寫(xiě)出結(jié)論,不必說(shuō)明理由)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC中,AD⊥BCCE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件:_____________,使△AEH≌△CEB

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,直線ABCD

          (1)如圖1,點(diǎn)E在直線BD的左側(cè),猜想∠ABE、CDE、BED的數(shù)量關(guān)系,并證明你的結(jié)論;

          (2)如圖2,點(diǎn)E在直線BD的左側(cè),BF、DF分別平分∠ABE、CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;

          (3)如圖3,點(diǎn)E在直線BD的右側(cè),BF、DF分別平分∠ABE、CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)寫(xiě)出你的猜想,并證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E,F(xiàn)分別是OA,OC的中點(diǎn),連接BE,DF

          (1)根據(jù)題意,補(bǔ)全原形;
          (2)求證:BE=DF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】解不等式組 ,并求其整數(shù)解.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對(duì)數(shù), 為“相伴數(shù)對(duì)”,記為

          (1)若是“相伴數(shù)對(duì)”,求的值;

          (2)寫(xiě)出一個(gè)“相伴數(shù)對(duì)” ,其中;

          (3)若是“相伴數(shù)對(duì)”,求代數(shù)式的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案