日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,△ABC中,CA=CB,以BC為一邊,在△ABC外作正方形BCDE,
          (1)求證:∠CAD=∠CDA;
          (2)若∠ACB=20°,求∠DAB.
          分析:(1)由四邊形BCDE是正方形,即可證得CD=CB,又由△ABC中,CA=CB,即可得△ACD是等腰三角形,根據(jù)等邊對(duì)等角,即可證得∠CAD=∠CDA;
          (2)由∠ACB=20°,在△ABC中,CA=CB,即可求得∠ACB的度數(shù),繼而求得∠ACD的度數(shù),又由在△ACD中,AC=CD,即可求得∠CAD的度數(shù),則可求得∠DAB.
          解答:(1)證明:∵四邊形BCDE是正方形,
          ∴CD=CB,(1分)
          又∵△ABC中,CA=CB,
          ∴CD=CA,(1分)
          ∴∠CAD=∠CDA;(1分)

          (2)∵在△ABC外作正方形BCDE
          又∵∠ACB=20°,
          ∴∠CAB=∠CBA=
          180°-20°
          2
          =80°,(2分)
          在△ACD中,∠ACD=20°+90°=110°,(1分)
          又AC=CD,
          ∴∠CAD=
          180°-110°
          2
          =35°,(2分)
          ∴∠DAB=∠CAB-∠CAD=80°-35°=45°.(2分)
          點(diǎn)評(píng):此題考查了正方形的性質(zhì)與等腰三角形的性質(zhì)與判定.此題難度不大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
          求證:∠A=∠B.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
          求:∠1+∠2+∠3+∠4.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
          求證:∠ANM=∠B.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
          (1)求∠2的度數(shù);
          (2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案