日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          如圖所示,⊙O1和⊙O2外切于點A,BC是⊙O1和⊙O2的外公切線,B、C為切點.AT為內公切線,AT與BC相交于點T.延長BA、CA,分別與兩圓交于點E、F.

          (1)求證:AB·AC=AE·AF;

          (2)若AT=2,⊙O1與⊙O2的半徑之比為1∶3,求AE的長.

          答案:
          解析:

          (1)連結BF、CE,先證AC⊥AB,再證Rt△ABF∽△Rt△AEC即可;(2)AE=6.


          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          如圖所示,⊙O1和⊙O2外切于A,BC是⊙O1和⊙O2的公切線,B、C是切點,求證:AB⊥AC.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          如圖所示,⊙O1和⊙O2相切于P點,過P的直線交⊙O1于A,交⊙O2于B,求證:O1A∥O2B.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          (2009•畢節(jié)地區(qū))如圖所示,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2的外公切線,A、B為切點,且∠ACB=90°.以AB所在直線為軸,過點C且垂直于AB的直線為軸建立直角坐標系,已知AO=4,OB=1.
          (1)分別求出A、B、C各點的坐標;
          (2)求經過A、B、C三點的拋物線y=ax2+bx+c的解析式;
          (3)如果⊙O1的半徑是5,問這條拋物線的頂點是否落在兩圓連心線O1 O2上?如果在,請證明;如果不在,請說明理由.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          如圖所示,⊙O1和⊙O2外切于點A,AB是⊙O1的直徑,BD切⊙O2于點D,交⊙O1O2
          于點C,求證:AB•CD=AC•BD.

          查看答案和解析>>

          科目:初中數學 來源: 題型:解答題

          如圖所示,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2的外公切線,A、B為切點,且∠ACB=90°.以AB所在直線為軸,過點C且垂直于AB的直線為軸建立直角坐標系,已知AO=4,OB=1.
          (1)分別求出A、B、C各點的坐標;
          (2)求經過A、B、C三點的拋物線y=ax2+bx+c的解析式;
          (3)如果⊙O1的半徑是5,問這條拋物線的頂點是否落在兩圓連心線O1 O2上?如果在,請證明;如果不在,請說明理由.

          查看答案和解析>>

          同步練習冊答案