解:(1)∵

,
=

[x
12+

-2x
1
+x
22+

-2

+…+x
n2+

-2x
n
],
=

(x
12+x
22+…+x
n2)+

(

+

+…+

)+

(-2x
1
-2

-…-2x
n
],
=

(x
12+x
22+…+x
n2)+

+

(-2x
1
-2

-…-2x
n
],
=

(x
12+x
22+…+x
n2)+

-2


(x
1+x
2+…+x
n],
=

(x
12+x
22+…+x
n2)-

,
∴

;
當(dāng)x
1=x
2=…=x
n=

時,
s
2=

-

=0,
∴此時方差s
2取最小值0;
(2)設(shè)數(shù)據(jù)-x,(y-1),x-y的平均數(shù)為:

=

[(-x)+(y-1)+(x-y)],
=-

,
方差s
2=

[x
2+(y-1)
2+(x-y)
2]-(

)
2=

-(-

)
2,
當(dāng)且僅當(dāng)-x=y-1=x-y=

=-

時,
s
2=0,
此時x=

,y=

.
分析:(1)根據(jù)方差的定義的公式展開,進行整理得出命題的正確性;
(2)結(jié)合方差s
2=

[x
2+(y-1)
2+(x-y)
2]-(

)
2=

-(-

)
2,當(dāng)且僅當(dāng)-x=y-1=x-y=

=-

時,求出即可.
點評:此題主要考查了方差公式的證明以及綜合應(yīng)用,正確的將公式變形是解決問題的關(guān)鍵.