分析:(1)根據(jù)弦切角定理和角平分線可以得出∠PEB=∠EAB,∠CPE=∠CPA,有了這兩組相等的對(duì)應(yīng)角,兩三角形也就相似了;
(2)可根據(jù)切割線定理進(jìn)行求解,根據(jù)切割線定理我們可得出PA的值,有了PB,PA的值,那么可先表示出PB+PA,PB•PA,利用一元二次方程根與系數(shù)的關(guān)系即可取出所求的方程;
(3)本題的關(guān)鍵是求出半徑的長(zhǎng),連接BO并延長(zhǎng)交⊙O于F,連接AF,那么∠EAB=90°,根據(jù)圓周角定理我們可得出∠F的度數(shù),又知道了AB的長(zhǎng),那么可用正弦函數(shù)求出BF的長(zhǎng),也就求出了半徑的長(zhǎng),有了半徑,根據(jù)圓的面積公式即可求出圓O的面積.
解答:
(1)證明:由弦切角定理得∠PEB=∠EAB,
∵PC是∠APE的平分線,
∴∠CPE=∠CPA,
∴△PDE∽△PCA;
(2)解:由切割線定理得PE
2=PA•PB,
∵PE=4
,PB=4,
∴PA=12,
∴PA+PB=16,PA•PB=48,
∴所求方程為:x
2-16x+48=0;
(3)解:連接BO并延長(zhǎng)交⊙O于F,連接AF,
則BF是⊙O的直徑,
∴∠BAF=90°,
∴∠AEB=∠F=60°
在Rt△ABF中,sin60°=
=
=
=
=
,
∴BF=
.
∴⊙O的面積為:π(
)
2=π
(×)2=
(面積單位).
點(diǎn)評(píng):本題主要考查了弦切角定理,切割線定理,圓周角定理,一元二次方程根與系數(shù)的關(guān)系和解直角三角形等知識(shí)點(diǎn),綜合性比較強(qiáng),對(duì)于學(xué)生分析問(wèn)題的能力要求比較高.