日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中,直線l:y=-2x+b分別與x軸,y軸相交于A,B兩點(diǎn),且點(diǎn)A為(-4,0),點(diǎn)P(0,k)是y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以P為圓心,3為半徑作⊙P.
          (1)填空:b=
           

          (2)連接PA,若PA=PB,試判斷⊙P與x軸的位置關(guān)系,并說明理由;
          (3)若⊙P與直線l有兩個(gè)交點(diǎn),交點(diǎn)為C、D,當(dāng)k為何值時(shí),以C、D、P為頂點(diǎn)的三角形是正三角形?
          精英家教網(wǎng)
          分析:(1)把A的坐標(biāo)代入一次函數(shù)的解析式求出即可;
          (2)根據(jù)PA=PB和勾股定理得到方程42+k2=(8-k)2,求出即可;
          (3)過P作PE⊥CD于E,根據(jù)勾股定理和等腰三角形的性質(zhì)求出PE,證△BEP∽△BOA,得到比例式,代入求出即可.
          解答:(1)解:把A(-4,0)代入y=-2x+b得:0=8+b,
          ∴b=-8,
          故答案為:-8.

          (2)答:⊙P與x軸的位置關(guān)系是相切.
          理由是:∵OA=4,OP=-k,PA=PB,
          由勾股定理得:42+(-k)2=(8+k)2
          解得:k=-3,
          ∴OP=-k=3,
          ∵⊙P的圓心P到x軸的距離OP等于⊙P的半徑3,
          ∴⊙P與x軸相切;

          (3)解:若P在B的上方,過P作PE⊥CD于E,
          精英家教網(wǎng)
          ∵正△PCD,PC=PD=DC=3,
          ∴DE=EC=
          3
          2
          ,
          在△PDE中,由勾股定理得:PE=
          3
          3
          2
          ,
          在△AOB中,由勾股定理得:AB=
          OA2+OB2
          =4
          5
          ,
          ∵∠PEB=∠AOB=90°,∠ABO=∠ABO,
          ∴△BEP∽△BOA,
          PE
          OA
          =
          PB
          AB
          ,
          3
          3
          2
          4
          =
          k+8
          4
          5

          解得:k=
          3
          2
          15
          -8;
          若P在B的下方,
          ∵正△PCD,PC=PD=DC=3,
          ∴DE=EC=
          3
          2
          ,
          在△PDE中,由勾股定理得:PE=
          3
          3
          2
          ,
          在△AOB中,由勾股定理得:AB=
          OA2+OB2
          =4
          5
          ,
          ∵∠PEB=∠AOB=90°,∠ABO=∠ABO,
          ∴△BEP∽△BOA,
          PE
          OA
          =
          PB
          AB
          ,
          3
          3
          2
          4
          =
          -8-k
          4
          5
          ,
          解得:k=
          -16-3
          15
          2

          精英家教網(wǎng)

          答:當(dāng)k為
          3
          2
          15
          -8或
          -16-3
          15
          2
          時(shí),以C、D、P為頂點(diǎn)的三角形是正三角形.
          點(diǎn)評:本題主要考查對等腰三角形的性質(zhì),勾股定理,相似三角形的性質(zhì)和判定,解一元一次方程,一次函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,等邊三角形的性質(zhì)等知識(shí)點(diǎn)的連接和掌握,能綜合運(yùn)用這些性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
          (1)求點(diǎn)B的坐標(biāo);
          (2)當(dāng)∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
          (3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊答案