日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,且AC=CD,AD=
          3
          CD
          (1)求證:CD是⊙O的切線;
          (2)若⊙O的半徑為2,求圖中陰影部分的面積.
          分析:(1)首先連接OC,BC,易證得△OAC∽△CAD,由AB是直徑,易求得cos∠A=
          3
          2
          ,sin∠ABC=
          3
          2
          ,繼而求得各角的度數(shù),繼而證得CD是⊙O的切線;
          (2)由⊙O的半徑為2,利用三角函數(shù)的性質(zhì),可求得CD的長,然后由S陰影=S△OCD-S扇形BOC,求得答案.
          解答:解:(1)連接OC,BC,
          ∵AC=CD,OA=OC,
          ∴∠A=∠D,∠A=∠OCA,
          ∴∠A=∠D=∠OCA,
          ∴△OAC∽△CAD,
          ∴AC:AD=OA:AC,
          ∵AD=
          3
          CD,
          ∴OA:OC=1:
          3
          ,
          ∵AB=2OA,
          AC
          AD
          =
          3
          2
          ,
          ∵AB是直徑,
          ∴∠ACB=90°,且cos∠A=
          3
          2
          ,sin∠ABC=
          3
          2

          ∴∠A=∠ACO=∠D=30°,∠ABC=60°,
          ∵OC=OB,
          ∴△OBC是等邊三角形,
          ∴∠BOC=60°,
          ∴∠OCB=180°-∠D-∠BOC=90°,
          即OC⊥CD,
          ∵C在⊙O上,
          ∴CD是⊙O的切線;

          (2)∵⊙O的半徑為2,
          ∴OC=2,
          在Rt△OCB中,∠D=30°,
          ∴CD=
          OC
          tan30°
          =2
          3
          ,
          ∴S陰影=S△OCD-S扇形BOC=
          1
          2
          ×2×2
          3
          -
          60
          360
          ×π×22=2
          3
          -
          2
          3
          π.
          點(diǎn)評(píng):此題考查了切線的判定、相似三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、扇形面積以及三角函數(shù)等知識(shí).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          28、如圖所示,在直角坐標(biāo)系中,矩形OBCD的邊長OB=4,OD=2.
          (1)P是OB上一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn) Q在 PB或其延長線上運(yùn)動(dòng),OP=PQ,作以 PQ為一邊的正方形PQRS,點(diǎn)P從O點(diǎn)開始沿射線OB方向運(yùn)動(dòng),直到點(diǎn)P與點(diǎn)B重合,設(shè)OP=x,正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與x的函數(shù)關(guān)系式;
          (2)在(1)中,當(dāng)x分別取1和3時(shí),y的值分別是多少?
          (3)已知直線l:y=ax-a都經(jīng)過一定點(diǎn)A,求經(jīng)過定點(diǎn)A且把矩形OBCD面積平均分成兩部分的直線的關(guān)系式和A點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖是一張傳說中的“藏寶圖”,圖上除標(biāo)明了A﹑B﹑C三點(diǎn)的位置以外,并沒有直接標(biāo)出”寶藏”的位置,但圖上注有尋找“寶藏”的方法:把直角△ABC補(bǔ)成矩形,使矩形的面積是A精英家教網(wǎng)BC的2倍,“寶藏”就在矩形未知的頂點(diǎn)處,那么“寶藏”的位置可能是
           
          .(用坐標(biāo)表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在直角坐標(biāo)系中,矩形OBCD的邊長OB=4,OD=2,點(diǎn)P是射線OB上一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)Q在PB或其延長線上運(yùn)動(dòng),OP=PQ,作以PQ為一邊的正方形PQRS,點(diǎn)P從O點(diǎn)開始沿射線OB方向運(yùn)動(dòng),運(yùn)動(dòng)速度是1個(gè)單位/秒,運(yùn)動(dòng)時(shí)間為t秒,直到點(diǎn)P與點(diǎn)B重合為止.
          (1)設(shè)正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與t的函數(shù)關(guān)系式;
          (2)y=2時(shí),求t的值;
          (3)當(dāng)t為何值時(shí),三角形CSR為等腰三角形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•龍灣區(qū)一模)如圖,熱氣球從山頂A豎直上升至點(diǎn)B需25秒,點(diǎn)D在地面上,DC⊥AB,垂足為C,從地面上點(diǎn)D分別仰視A,B兩點(diǎn),測得∠ADC=20°,∠BDC=60°,若CD=130米.求該熱氣球從山頂A豎直上升至點(diǎn)B的平均速度.(結(jié)果精確到0.1米/秒)
          (參考數(shù)據(jù):tan20°≈0.36,tan30°=0.58,tan60°≈1.73,tan70°≈2.75)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:中學(xué)學(xué)習(xí)一本通 數(shù)學(xué) 九年級(jí)下冊(cè) 北師大課標(biāo) 題型:044

          如圖所示,在小山的東側(cè)A處有一熱氣球沿著與豎直方向夾角為的方向向東飛行,每分鐘飛行28 m,半小時(shí)后到達(dá)C處,這時(shí)氣球上的人發(fā)現(xiàn),在A處的正西方向有一處著火點(diǎn)B,5分鐘后,在D處測得著火點(diǎn)日的俯角是,求熱氣球升空點(diǎn)A與著火點(diǎn)B的距離.(結(jié)果精確到l m)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案