日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方形ABCO的邊長為,OAx軸正半軸的夾角為15°,點(diǎn)B在第一象限,點(diǎn)Dx軸的負(fù)半軸上,且滿足∠BDO15°,直線ykx+b經(jīng)過B、D兩點(diǎn),則bk_____

          【答案】2

          【解析】

          連接OB,過點(diǎn)BBEx軸于點(diǎn)E,根據(jù)正方形的性質(zhì)可得出∠AOB的度數(shù)及OB的長,結(jié)合三角形外角的性質(zhì)可得出∠BDO=∠DBO,利用等角對等邊可得出ODOB,進(jìn)而可得出點(diǎn)D的坐標(biāo),在RtBOE中,通過解直角三角形可得出點(diǎn)B的坐標(biāo),由點(diǎn)B,D的坐標(biāo),利用待定系數(shù)法可求出k,b的值,再將其代入(bk)中即可求出結(jié)論.

          解:連接OB,過點(diǎn)BBEx軸于點(diǎn)E,如圖所示.

          ∵正方形ABCO的邊長為,

          ∴∠AOB45°,OBOA2

          OAx軸正半軸的夾角為15°,

          ∴∠BOE45°﹣15°=30°.

          又∵∠BDO15°,

          ∴∠DBO=∠BOE﹣∠BDO15°,

          ∴∠BDO=∠DBO,

          ODOB2,

          ∴點(diǎn)D的坐標(biāo)為(﹣20).

          RtBOE中,OB2,∠BOE30°,

          BEOB1,OE

          ∴點(diǎn)B的坐標(biāo)為(,1).

          B1),D(﹣20)代入ykx+b,

          得:

          解得:,

          bk42﹣(2)=2

          故答案為:2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,A,B兩個(gè)頂點(diǎn)在x軸上方,點(diǎn)C的坐標(biāo)是(1,0),以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,得到△A'B'C',設(shè)點(diǎn)B的對應(yīng)點(diǎn)B'的橫坐標(biāo)為2,則點(diǎn)B的橫坐標(biāo)為(  )

          A.1B.C.2D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(操作)BD是矩形ABCD的對角線,AB=4BC=3.將BAD繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)α度(α360°)得到BEF,點(diǎn)A、D的對應(yīng)點(diǎn)分別為E、F.若點(diǎn)E落在BD上,如圖①,則DE=______

          (探究)當(dāng)點(diǎn)E落在線段DF上時(shí),CDBE交于點(diǎn)G.其它條件不變,如圖②.

          1)求證:ADB≌△EDB;

          2CG的長為______

          (拓展)連結(jié)CF,在BAD的旋轉(zhuǎn)過程中,設(shè)CEF的面積為S,直接寫出S的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=EDF=90°,△EDF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

          1)如圖,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;

          2)如圖,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),求證:△BPE∽△CEQ

          3)在(2)的條件下,BP=2,CQ=9,則BC的長為_______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于點(diǎn),與軸的負(fù)半軸交于點(diǎn),且

          1)求一次函數(shù)的表達(dá)式;

          2)在軸上是否存在一點(diǎn),使得是以為腰的等腰三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

          3)反比例函數(shù)的圖象記為曲線,將向右平移3個(gè)單位長度,得曲線,則平移至處所掃過的面積是_________.(直接寫出答案)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸交于A,B兩點(diǎn),OCAB于點(diǎn)C,P是線段OC上的一個(gè)動(dòng)點(diǎn),連接AP,將線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,得到線段AP',連接CP',則線段CP'的最小值為(  )

          A.B.1C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖拋物線y=ax2+3ax+ca0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB,


          1)求拋物線的解析式;
          2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
          3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,蘭蘭站在河岸上的G點(diǎn),看見河里有一只小船沿垂直于岸邊的方向劃過來,此時(shí),測得小船C的俯角是∠FDC30°,若蘭蘭的眼睛與地面的距離是1.5米,BG1米,BG平行于AC所在的直線,迎水坡的坡度i43,坡高BE8米,求小船C到岸邊的距離CA的長.(參考數(shù)據(jù):≈1.7,結(jié)果保留一位小數(shù))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)二次函數(shù)y=ax-1)(x-a),其中a是常數(shù),且a0

          1)當(dāng)a=2時(shí),試判斷點(diǎn)(--5)是否在該函數(shù)圖象上.

          2)若函數(shù)的圖象經(jīng)過點(diǎn)(1,-4),求該函數(shù)的表達(dá)式.

          3)當(dāng)-1≤x+1時(shí),yx的增大而減小,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案