日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(0,
          3
          )為圓心,以2
          3
          長(zhǎng)為半徑作⊙M交x軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),連接AM并延長(zhǎng)交⊙M于P點(diǎn),連接PC交x軸于E.
          (1)求點(diǎn)C、P的坐標(biāo);
          (2)求證:BE=2OE.
          分析:(1)連接PB.根據(jù)直徑所對(duì)的圓周角是直角判定PB⊥OM;由已知條件OA=OB推知OM是三角形APB的中位線;最后根據(jù)三角形的中位線定理求得點(diǎn)P的坐標(biāo)、由⊙M的半徑長(zhǎng)求得點(diǎn)C的坐標(biāo);
          (2)連接AC,證△AMC為等邊三角形,根據(jù)等邊三角形的三個(gè)內(nèi)角都是60°、直徑所對(duì)的圓周角∠ACP=90°求得∠OCE=30°,然后在直角三角形OCE中利用30°角所對(duì)的直角邊是斜邊的一半來證明BE=2OE.
          解答:精英家教網(wǎng)(1)解:連接PB,∵PA是圓M的直徑,∴∠PBA=90°
          ∴AO=OB=3
          又∵M(jìn)O⊥AB,∴PB∥MO.∴PB=2OM=2
          3

          ∴P點(diǎn)坐標(biāo)為(3,2
          3
          )(2分)
          在直角三角形ABP中,AB=6,PB=2
          3

          根據(jù)勾股定理得:AP=4
          3
          ,
          所以圓的半徑MC=2
          3
          ,又OM=
          3
          ,
          所以O(shè)C=MC-OM=
          3
          ,
          則C(0,-
          3
          )(1分)

          (2)證明:連接AC.
          ∵AM=MC=2
          3
          ,AO=3,OC=
          3

          ∴AM=MC=AC=2
          3
          ,
          ∴△AMC為等邊三角形(2分)
          又∵AP為圓M的直徑
          得∠ACP=90°
          得∠OCE=30°(1分)
          ∴OE=1,BE=2
          ∴BE=2OE.(2分)
          點(diǎn)評(píng):本題綜合考查了圓周角定理、等邊三角形的判定與性質(zhì)以及坐標(biāo)與圖形性質(zhì).解答該題時(shí)通過作輔助線AC、BP構(gòu)建直徑所對(duì)的圓周角∠ACP、∠ABP,然后利用圓周角定理來解決問題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
          (1)求點(diǎn)B的坐標(biāo);
          (2)當(dāng)∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
          (3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案